Programme Specification

BSc (Hons) Geology with Physical Geography
(2019-20)

This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if s/he takes full advantage of the learning opportunities that are provided.

Awarding Institution: University of Southampton
Teaching Institution: University of Southampton
Mode of Study: Full-time
Duration in years: 3
Accreditation details: Geological Society
Final award: Bachelor of Science with Honours (BSc (Hons))
Name of award: Geology with Physical Geography
Interim Exit awards: Certificate of Higher Education (CertHE)
Diploma of Higher Education (DipHE)
FHEQ level of final award: Level 6
UCAS code: F6F8
Programme code: 4904
QAA Subject Benchmark or other external reference: Earth Sciences, Environmental Sciences And Environmental Studies 2007
Programme Lead: John Marshall (jeam)

Programme Overview

Brief outline of the programme
This BSc Geology with Physical Geography degree programme has been specifically designed to give you a comprehensive training in all aspects of geology, providing an understanding of the nature, dynamics and evolution of the physical, chemical and biological processes operating on the Earth over the past four billion years.

Your contact hours will vary depending on your module/option choices. Full information about contact hours is provided in individual module profiles.

Learning and teaching
You will develop core knowledge and understanding, subject specific skills and general and transferable, graduate key skills. These skills will be obtained via compulsory module and specialised option module lectures, tutor and student-led tutorials, student-led seminars and presentations, essay and report writing, use of the internet, guided independent study, group study and your own research. Experimental, research, experiment
design, data processing and interpretive/analytical skills are further developed through laboratory classes and fieldwork.

Assessment

To test your knowledge and understanding of material presented in the lectures and associated practicals, you will be assessed via a combination of written examinations, essays, group and individual oral presentations, poster presentations and short coursework assignments. Experimental, analytical and research skills are assessed through laboratory experiment write-ups, library based project work, research project reports, field notebooks, and fieldwork exercises and/or reports.

Special Features of the programme

Fieldwork is an essential and exciting component of your degree programme and is incorporated into various modules. Further information is available in the Student Handbooks and on the Academic Unit web pages: http://www.southampton.ac.uk/oes/.

Please note: As a research-led University, we undertake a continuous review of our programmes to ensure quality enhancement and to manage our resources. As a result, this programme may be revised during a student's period of registration; however, any revision will be balanced against the requirement that the student should receive the educational service expected. Please read our Disclaimer to see why, when and how changes may be made to a student’s programme.

Programmes and major changes to programmes are approved through the University's programme validation process which is described in the University's Quality handbook.

Educational Aims of the Programme

The spectrum of programmes within ocean and Earth science offered by the Academic Unit are all scientifically exciting and challenging, as well as highly relevant to the modern world. Within this particular programme of study, we aim to develop and enhance your knowledge of and enthusiasm for geology. There is a natural and important synergy between geology and the scientific disciplines of marine biology, oceanography and physical geography, in particular as they apply to the natural environment. We offer the opportunity to study geology with one of these disciplines.

Ocean and Earth Science (OES) is strongly committed to providing the very best learning experience to all our students in a friendly and stimulating environment. We are known nationally and internationally for our excellence in teaching, and are continually improving the scope and delivery of our activities.

Ocean and Earth Science is housed in the prestigious National Oceanography Centre Southampton (NOCS), which opened in 1995, housing the University of Southampton School of Ocean & Earth Science and part of the Natural Environment Research Council (NERC)’s National Oceanography Centre. NOCS is one of the world’s largest centres devoted to research, teaching and technology development in Ocean and Earth science.

Research carried out by academic staff provides direct and enthusiastic input into a challenging and stimulating teaching programme. There are also unique opportunities for you to undertake research projects with scientists outside Ocean and Earth Science based at the National Oceanography Centre Southampton.

The specific aims of these programmes are to:

- Provide you with a coherent programme of study which will offer you an in-depth knowledge and understanding of all aspects of Earth Science, and to allow you to further develop some degree of specialisation within your field of choice.
- Provide you with a high quality and intellectually stimulating experience of learning in a supportive environment.
- Equip you to undertake a successful career as a professional geologist, or in a relevant area of
oceanographic/marine/environmental/geographical science, or a career in a wide range of other contexts.

- Provide you with a sound background and suitable qualification that would enable you to proceed to a more specialist higher degree at the MSc, MRes or PhD level.
- Develop your critical and analytical problem-solving powers in relation to the Earth sciences, but also in relation to broader applications.
- Develop your intellectual, practical and fieldwork skills in the collection, analysis, interpretation and understanding of geological (and/or oceanographic, biological and geographical) data.
- Develop your powers of observation, analysis and understanding to make decisions with appropriate acknowledgement of uncertainties.
- Enhance the development of your interpersonal skills.
- Provide you with opportunities for shared multi-disciplinary learning in the Earth sciences.
- Enable you to engage with life-long learning, study and enquiry, and to appreciate the value of education and research to society.
- Enable you to fulfil the requirements of the Geological Society of London for admission to Fellowship of the Society.

Programme Learning Outcomes

Knowledge and Understanding

On successful completion of this programme you will have knowledge and understanding of:

A1. The need for both a multidisciplinary and an interdisciplinary approach in advancing knowledge and understanding of Earth and Marine systems, drawing, as appropriate, from the natural sciences;
A2. The processes which shape the natural world at different temporal and spatial scales, and their influence on and, conversely, their modification by human activities;
A3. The terminology, nomenclature and classification systems used and developed within the geosciences (and marine sciences/physical geography where relevant);
A4. The significance of a wide range of geological techniques in addressing research topics across a broad range of Earth science problems;
A5. Methods of acquiring, interpreting and analysing all relevant forms of scientific information with a critical understanding of the appropriate contexts for their use;
A6. Issues concerning the availability and sustainability of resources and their geological context;
A7. The contribution of Earth and Marine scientific expertise to debates on environmental issues and how knowledge of these subjects forms the basis for informed concern about the Earth and its people;
A8. The contribution of your subject to the development of knowledge about the world we live in;
A9. The relevance of knowledge and skills acquired on your programme of study to professional activity, environmental impact and the world of work.
A12. The relationship between physical and human processes in shaping terrestrial and marine environments.
A14. The use of concepts of space and spatial variation in scientific analysis of the environment.

Teaching and Learning Methods

You will develop core knowledge and understanding, subject specific skills and general and transferable, graduate key skills. These skills will be obtained via compulsory module and specialised option module lectures, tutor and student-led tutorials, student-led seminars and presentations, essay and report writing, use of the internet, guided independent study, group study and your own research. Experimental, research, experiment design, data processing and interpretive/analytical skills are further
developed through laboratory classes and fieldwork.

Assessment Methods

To test your knowledge and understanding of material presented in the lectures and associated
practicals, you will be assessed via a combination of written examinations, essays, group and individual
oral presentations, poster presentations and short coursework assignments. Experimental, analytical
and research skills are assessed through laboratory experiment write-ups, library based project work,
research project reports, field notebooks, and fieldwork exercises and/or reports.

Subject Specific Intellectual and Research Skills

On successful completion of this programme you will be able to understand:

B1. The cycling of matter and the flows of energy into, between and within the solid Earth, hydrosphere,
 atmosphere and biosphere.
B2. The chemistry, physics, biology and mathematics that underpin our understanding of Earth structure,
 materials and processes.
B3. Major geoscience paradigms: the extent of geological time; evolution: the history of life on Earth; plate
tectonics.
B4. Geological time, including the principles of stratigraphy, radiometric dating, the stratigraphic column,
 rates of Earth processes, major events in Earth history, and the evolution of life as revealed by the fossil
 record.
B5. The study of structures, materials and processes ranging in scale from atoms to planets.
B6. The structure and composition of the solid Earth (core, mantle, crust, asthenosphere, lithosphere, etc.),
 the hydrosphere, the atmosphere, the cryosphere and the biosphere, and the processes operating within
 and between them.
B7. The identification of rocks, minerals, fossils, and geological structures.
B8. Collection and documentation of geological information in the field, including the production and
 interpretation of geological maps.
B9. Surveying and measurement both in the field and laboratory, and using qualitative, quantitative and
 instrumental techniques.
B10. The exploration for, and the development and exploitation of, Earth resources.
B12. The concepts of Earth observation and remote data acquisition skills.
B13. Earth science perspectives on sustainability and social awareness (e.g. renewable versus non-renewable
 resources, climate change, the history of life and biodiversity).

Transferable and Generic Skills

On successful completion of this programme you will be able to:

C1. Recognise and use geological (and oceanographic/geographical/environmental/marine biological where
 relevant) theories, paradigms, concepts and principles.
C2. Critically analyse, synthesise and summarise information, including published research.
C3. Collect and integrate several lines of evidence to formulate and test hypotheses.

C4. Apply knowledge and understanding to address familiar and unfamiliar problems, including collection and documentation of geological (and oceanographic/geographical/environmental/marine biological) information in the field, experimental design of field surveys and sampling programmes.

C5. Recognise the moral and ethical issues of scientific investigations and appreciate the need for professional codes of conduct.

C6. Plan, design, conduct and report (both verbally and in writing) on investigations, including the integration of external datasets and published results.

C7. Collect, record and analyse primary data using appropriate techniques in the field and laboratory.

C8. Undertake field and laboratory investigations in a responsible and safe manner, paying due attention to risk assessment, rights of access, relevant health and safety regulations, and sensitivity to the impact of investigations on the environment and stakeholders.

C9. Locate, retrieve, read, use and reference the geological (and oceanographic/geographical/environmental/marine biological) work of others in an appropriate manner.

C10. Produce and interpret geological maps and other aids to visualisation.

C11. Plan and execute a research project at the forefront of Earth science [MSci students only].

C12. Communicate effectively to a variety of audiences in written, verbal and graphical forms.

C13. Select and use the appropriate method and means of communication for a range of different situations.

C14. Absorb and respond to a variety of information sources (e.g., textual, numerical, verbal, graphical).

C15. Appreciate issues of sample selection, accuracy, precision and uncertainty during collection, recording and analysis of data in the field and in the laboratory.

C16. Prepare, process, interpret and present data, using appropriate statistical analyses and computer software packages, including geographic information systems.

C17. Develop computing and data analysis skills in a wide range of relevant geological techniques.

C18. Solve numerical problems using both computer and non-computer-based techniques.

C19. Critically use the Internet as a means of communication and as a source of information.

C20. Identify individual and collective goals and responsibilities and perform in an appropriate manner.

C21. Appreciate the concepts of learning in groups and of team performance.

C22. Recognise and respect the views and opinions of other team members.

C23. Evaluate performance as an individual and as a team member to maximise results and benefits.

C24. Develop the skills necessary for self-managed and life-long learning (e.g. working independently, time management and organisation skills).

C25. Identify and work toward targets for personal, academic and career development.

C26. Develop an adaptable and flexible approach to study and work.
Programme Structure

The programme structure table is below:

Information about pre and co-requisites is included in individual module profiles.

Where optional modules have been specified, the following is an indicative list of available optional modules, which are subject to change each academic year. Please note in some instances modules have limited spaces available.

Part I

The programme is divided into individual study modules at each part. Each study module is accredited as being worth a certain number of credit points to you on successful completion. Modules are normally worth 7.5 ECTS (15 CATS) which is equivalent to 150 hours of study. Normally up to 60 hours comprises contact teaching (lectures, practical sessions, tutorials, etc.), and the remainder of the time is for your own independent study. Modules are generally assessed at the end of each semester, but some are assessed entirely by coursework throughout the duration of the module.

In part 1, there are a number of compulsory modules, which lay a solid foundation in the basic discipline of this programme. A compulsory Mathematics module is also taken, depending on your mathematical background. More specialised training and options that enable diversification commence in part 2.

In part 3, students are exposed to the forefronts of geological (and oceanographic/geographical/environmental/biological where applicable) knowledge, with the opportunity to conduct supervised original research. A significant field mapping project and report is undertaken, which is optional for joint Honours degree students, with fieldwork in the summer between parts 2 and 3 and the project completed during part 3.

Part I Compulsory

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>ECTS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOES1002</td>
<td>Dynamic Earth</td>
<td>7.5</td>
<td>Compulsory</td>
</tr>
<tr>
<td>GEOG1002</td>
<td>Dynamic Landscapes</td>
<td>7.5</td>
<td>Compulsory</td>
</tr>
<tr>
<td>SOES1008</td>
<td>Earth and Ocean System</td>
<td>7.5</td>
<td>Compulsory</td>
</tr>
<tr>
<td>SOES1001</td>
<td>Earth Materials</td>
<td>7.5</td>
<td>Compulsory</td>
</tr>
<tr>
<td>SOES1014</td>
<td>Key Skills for Geoscientists</td>
<td>7.5</td>
<td>Compulsory</td>
</tr>
<tr>
<td>GEOG1001</td>
<td>The Earth System</td>
<td>7.5</td>
<td>Compulsory</td>
</tr>
<tr>
<td>SOES1009</td>
<td>The Living Earth</td>
<td>7.5</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Part I Optional

ONE of the following must be taken, depending on your mathematical background

SOES1010 GCSE Mathematics, or AS - level Mathematics (Grade C or below)

MATH1004 AS - level Mathematics (Grade A or B) or A - Level Mathematics at Grade C or below

MATH1008 A - Level Mathematics (Grade A or B)
Part II

Part II Compulsory

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>ECTS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOES2038</td>
<td>Exploration Geophysics and Remote Sensing</td>
<td>7.5</td>
<td>Compulsory</td>
</tr>
<tr>
<td>SOES2034</td>
<td>Key Skills and Fieldwork for Geologists</td>
<td>7.5</td>
<td>Compulsory</td>
</tr>
<tr>
<td>SOES2032</td>
<td>Palaeobiology</td>
<td>7.5</td>
<td>Compulsory</td>
</tr>
<tr>
<td>SOES2013</td>
<td>Sedimentary Systems and Processes</td>
<td>7.5</td>
<td>Compulsory</td>
</tr>
<tr>
<td>SOES2037</td>
<td>Structural Geology and GIS</td>
<td>7.5</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Part II Optional

A total of THREE modules must be chosen. One must be chosen from List A and two must be chosen from List B, with permission SOES 2032 Palaeobiology can be substituted by SOES 2004 Igneous and Metamorphic Petrology to open up the option for SOES 3020 Volcanic and Mantle Processes plus SOES 2018 Geochemistry in Part III.

Part II Optional A

List A: Choose ONE from the recommended list below.

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>ECTS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOES2027</td>
<td>Coastal and Estuarine Oceanography II</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>SOES2018</td>
<td>Geochemistry</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>SOES2003</td>
<td>Geohazards and Earth Resources</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>SOES2004</td>
<td>Igneous and Metamorphic Petrology</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>SOES2017</td>
<td>Marine Benthos Ecology</td>
<td>7.5</td>
<td>Optional</td>
</tr>
</tbody>
</table>

Part II Optional B

List B: Choose TWO from the recommended list below.

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>ECTS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG2032</td>
<td>Global Climate Change: Science, Impacts and Policy</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>GEOG2006</td>
<td>Quaternary Environmental Change</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>GEOG2007</td>
<td>Remote Sensing for Earth Observation</td>
<td>7.5</td>
<td>Optional</td>
</tr>
</tbody>
</table>

Part III

Part III Compulsory
The following module is compulsory and must be taken:

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>ECTS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOES3006</td>
<td>The Evolving Earth</td>
<td>7.5</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Part III Optional

Please note that where a list of options has been given, this is an indicative list and we cannot guarantee to offer every option each year.

THREE must be chosen from List A
TWO must be chosen from List B
ONE must be chosen from List C

Part III Optional A

List A: Choose THREE from the recommended list below
Spaces are limited on SOES3041 and acceptance is by application. Please ensure you list a reserve option when making your option choices.

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>ECTS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOES3014</td>
<td>Coastal Sediment Dynamics</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>SOES3041</td>
<td>Communicating and Teaching in the Undergraduate Ambassadors Scheme</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>SOES3008</td>
<td>Environmental and Engineering Geology</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>SOES3032</td>
<td>Global Tectonics</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>SOES3004</td>
<td>Microfossils, Environments and Time</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>SOES3015</td>
<td>Palaeoclimate Change</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>SOES3002</td>
<td>Petroleum Geology and Mineral Resources</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>SOES3029</td>
<td>Seafloor Exploration and Surveying</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>SOES3005</td>
<td>Sediments: Modern and Ancient</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>SOES3020</td>
<td>Volcanic and Mantle Processes</td>
<td>7.5</td>
<td>Optional</td>
</tr>
</tbody>
</table>

Part III Optional B

List B: Choose TWO from the recommended list below

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Title</th>
<th>ECTS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOG3048</td>
<td>Aeolian Landscapes: Modelling and Measuring Aeolian Systems</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>GEOG3004</td>
<td>Arctic and Alpine Geomorphology</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>GEOG3020</td>
<td>Glaciers and Glaciation</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>GEOG3005</td>
<td>Paleoclimatology and Conservation</td>
<td>7.5</td>
<td>Optional</td>
</tr>
<tr>
<td>GEOG3023</td>
<td>River Basin Management and Restoration</td>
<td>7.5</td>
<td>Optional</td>
</tr>
</tbody>
</table>

Part III Optional C
Progression Requirements
The programme will follow the University's regulations for Progression, Determination and Classification of Results: Undergraduate and Integrated Masters Programmes as set out in the General Academic Regulations in the University Calendar: http://www.calendar.soton.ac.uk/sectionIV/sectIV-index.html

Support for student learning
There are facilities and services to support your learning some of which are accessible to students across the University and some of which will be geared more particularly to students in your particular Faculty or discipline area.

The University provides:
- library resources, including e-books, on-line journals and databases, which are comprehensive and up-to-date; together with assistance from Library staff to enable you to make the best use of these resources
- high speed access to online electronic learning resources on the Internet from dedicated PC Workstations onsite and from your own devices; laptops, smartphones and tablet PCs via the Eduroam wireless network. There is a wide range of application software available from the Student Public Workstations.
- computer accounts which will connect you to a number of learning technologies for example, the Blackboard virtual learning environment (which facilitates online learning and access to specific learning resources)
- standard ICT tools such as Email, secure filestore and calendars.
- access to key information through the MySouthampton Student Mobile Portal which delivers timetables, Module information, Locations, Tutor details, Library account, bus timetables etc. while you are on the move.
- IT support through a comprehensive website, telephone and online ticketed support and a dedicated helpdesk in the Hartley Library.
- Enabling Services offering support services and resources via a triage model to access crisis management, mental health support and counselling. Support includes daily Drop In at Highfield campus at 13.00 – 15.00 (Monday, Wednesday and Friday out of term-time) or via on-line chat on weekdays from 14.00 – 16.00. Arrangements can also be made for meetings via Skype.
- assessment and support (including specialist IT support) facilities if you have a disability, long term health problem or Specific Learning Difficulty (e.g. dyslexia).
- the Student Services Centre (SSC) to assist you with a range of general enquiries including financial matters, accommodation, exams, graduation, student visas, ID cards
- Career and Employability services, advising on job search, applications, interviews, paid work, volunteering and internship opportunities and getting the most out of your extra-curricular activities alongside your degree programme when writing your CV.
- Other support that includes health services (GPs), chaplaincy (for all faiths) and 'out of hours' support for students in Halls and in the local community, (18.00-08.00)
- A Centre for Language Study, providing assistance in the development of English language and study skills for non-native speakers.

The Students' Union provides
- an academic student representation system, consisting of Course Representatives, Academic Presidents, Faculty Officers and the Vice-President Education; SUSU provides training and support for all these representatives, whose role is to represent students’ views to the University.
- opportunities for extracurricular activities and volunteering
- an Advice Centre offering free and confidential advice including support if you need to make an academic appeal
- Support for student peer-to-peer groups, such as Nightline.

Associated with your programme you will be able to access:

- A personal tutor system - our tutorial system aims to provide personalised pastoral and academic care for all students. You will be allocated a member of the academic staff as your personal tutor on arrival at University, and he/she will be charged with your guidance throughout your undergraduate career. You will also
have a shadow tutor for contact if your personal tutor is absent. You can also approach the Programme Leader for Geology, or the Academic Unit’s Senior Tutor if necessary.

- Programme and module guides/information. Hard copies are available, but are mainly published on the web: www.southampton.ac.uk/oes/ and www.blackboard.soton.ac.uk.
- Two large computer clusters at the National Oceanography Centre, Southampton for dedicated use by undergraduate students. Additional computer clusters are available for your use on the other University campuses, as well as at the Halls of Residence.
- Teaching staff via email and personal contact.
- Support from the administrative staff of the Student Office, which is readily available during the normal working day.
- A pool of geological equipment is available for laboratory and field-based learning, and the standard field equipment is issued to full fee paying students.
- A research-led environment at the NOCS which provides a high quality learning environment for students.
- A wide range of well-equipped laboratories which are available for student project work, and specific study rooms.
- Close collaboration between Ocean and Earth Science and staff from the Natural Environment Research Council’s NOCS provides additional support for student learning, particularly with regard to independent research projects.
- Specialised teaching labs and lecture theatre at the NOCS.

Methods for evaluating the quality of teaching and learning

You will have the opportunity to have your say on the quality of the programme in the following ways:

- Completing student evaluation questionnaires for each module of the programme.
- Acting as a student representative on various committees, e.g. Staff Student Liaison Committees, OES Education and Quality Committee and Faculty Programmes Committee OR providing comments to your student representative to feedback on your behalf.
- Serving as a student representative on Faculty Scrutiny Groups for programme validation.
- Taking part in programme validation meetings by joining a panel of students to meet with the Faculty Scrutiny Group.

The ways in which the quality of your programme is checked, both inside and outside the University, are:

- Regular module and programme reports which are monitored by the Faculty.
- Programme validation, normally every five years.
- External examiners, who produce an annual report.
- Accreditation carried out by the Geological Society of London.
- A national Research Assessment Exercise (our research activity contributes directly to the quality of your learning experience).
- Institutional Review by the Quality Assurance Agency

Further details on the University’s quality assurance processes are given in the Quality Handbook.

Career Opportunities

Graduates can expect to find work in the following areas:

- Environmental surveying, research and consultancy
- Engineering geology, construction industry and geotechnical surveying
- Petroleum and minerals resources industry

Research
Teaching

Graduates with a degree in geology with physical geography can expect to find work in the following areas:

- Environmental surveying, research and consultancy
- Engineering geology, construction industry and geotechnical surveying
Teaching
- Government and voluntary agencies
- Master's degree and postgraduate research
- The broad basis of the degree gives you entry into a wide range of other science-based careers

External Examiner(s) for the programme

Name: Professor Kevin G Taylor - University of Manchester

Students must not contact External Examiner(s) directly, and external examiners have been advised to refer any such communications back to the University. However, all finalists will have the opportunity to attend an open meeting with the external examiner. Students should raise any general queries about the assessment and examination process for the programme with their Course Representative, for consideration through Staff: Student Liaison Committee in the first instance, and Student representatives on Staff: Student Liaison Committees will have the opportunity to consider external examiners' reports as part of the University's quality assurance process.

External examiners do not have a direct role in determining results for individual students, and students wishing to discuss their own performance in assessment should contact their Personal Academic Tutor in the first instance.

Please note: This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if s/he takes full advantage of the learning opportunities that are provided. More detailed information can be found in the programme handbook.
Appendix 1:

Students are responsible for meeting the cost of essential textbooks, and of producing such essays, assignments, laboratory reports and dissertations as are required to fulfil the academic requirements for each programme of study. In addition to this, students registered for this programme also have to pay for:

Additional Costs

<table>
<thead>
<tr>
<th>Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Licenses</td>
<td>Will be provided by the University where appropriate</td>
</tr>
<tr>
<td>Hardware</td>
<td>It is advisable that students provide their own laptop or personal computer, although shared facilities are available across the University campus.</td>
</tr>
<tr>
<td>Computer discs or USB drives</td>
<td>Students are expected to provide their own data storage device</td>
</tr>
<tr>
<td>Stationery</td>
<td>You will be expected to provide your own day-to-day stationery items, e.g. pens, pencils, notebooks, etc. Any specialist stationery items will be specified under the Additional Costs tab of the relevant module profile.</td>
</tr>
<tr>
<td>Textbooks</td>
<td>Where a module specifies core texts these should generally be available on the reserve list in the library. However, students may prefer to buy their own copies. These can be purchased from any source. Some modules suggest reading texts as optional background reading. The library may hold copies of such texts, or alternatively you may wish to purchase your own copies. Although not essential reading, you may benefit from the additional reading materials for the module.</td>
</tr>
<tr>
<td>Laboratory Equipment and Materials</td>
<td>Laboratory equipment and consumables will be provided where appropriate.</td>
</tr>
<tr>
<td>Approved Calculators</td>
<td>Candidates may use calculators in the examination room only as specified by the University and as permitted by the rubric of individual examination papers. These may be purchased from any source and no longer need to carry the University logo.</td>
</tr>
<tr>
<td>Fieldwork: logistical costs</td>
<td>Fieldwork: introduction</td>
</tr>
<tr>
<td></td>
<td>Experience of working in the field is an essential part of your learning process and is also widely regarded as valuable in personal development.</td>
</tr>
<tr>
<td></td>
<td>Please note that circumstances may dictate that some field-courses are timetabled within part of the vacation period.</td>
</tr>
<tr>
<td></td>
<td>For compulsory residential field courses, accommodation and travel are provided (for Independent Geology Mapping a fixed amount is provided to cover these costs for the least expensive area). You are usually expected to cover the costs of food and drink, although some courses may include meals. For optional field courses, students are asked to make a contribution to the travel and/or accommodation costs. Details are provided in the table below.</td>
</tr>
<tr>
<td></td>
<td>Please note that if a field course is compulsory for your degree programme and you later move from that degree programme to one where that field course is optional, you will be charged for the cost of that field course. To provide an example: students on the MSci Marine Biology programme undertaking the field course to Bermuda will be charged the full cost of the field course if they later choose to transfer to the BSc Marine Biology degree programme.</td>
</tr>
<tr>
<td></td>
<td>In addition to the field courses mentioned in this booklet, there are also one-day field courses associated with specific modules; students are</td>
</tr>
</tbody>
</table>

expected to cover food and drink costs for these days, but transport is arranged and paid for by the department. As the department arranges transport, should students wish to make their own way to or from field courses, then they must meet these costs themselves.

Additional Information

SOES3020: Tenerife Field Course
As this is an overseas field course which requires the department to make early flight bookings to minimise costs, students who pre-register for this module will be liable for the full flight costs if they subsequently opt not to take the module.

SOES3025: Independent Geology Mapping
Precise costs depend on specific arrangements made by students and on individual destinations. The department undertakes to cover the costs for accommodation and travel up to the cost of the least expensive destination, and currently provides £500 per student.

Notes:
Where a student contribution is made, invoices will be issued approximately 2 weeks prior to the start of a field course and payment will be due within 7 days.

Dates and costs are correct at the time of going to press.

Insurance (travel, medical, personal property and baggage)
- Students are automatically insured whilst on University organised field courses undertaken as part of their official studies, including field courses in the UK involving an overnight stay.

<table>
<thead>
<tr>
<th>Field Equipment and Materials</th>
<th>Fieldwork equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Geology and Geophysics students</td>
</tr>
<tr>
<td></td>
<td>Geology and Geophysics students will need a minimum amount of field equipment and this is provided by the department. Most will be provided during Induction.</td>
</tr>
<tr>
<td></td>
<td>Geology students receive: compass-clinometer; geological hammer; hand lens; waterproof field notebooks (quantity depends on degree programme); steel tape measure; safety helmet; clip board; safety goggles; bottle for dilute hydrochloric acid; outdoor first aid kit; 3 mapping pens; grain size comparator cards.</td>
</tr>
<tr>
<td></td>
<td>Geophysics students receive: compass-clinometer; hand lens; waterproof field notebooks (quantity depends on degree programme); steel tape measure; safety helmet; clip board; safety goggles; bottle for dilute hydrochloric acid; outdoor first aid kit; 3 mapping pens; grain size comparator cards.</td>
</tr>
<tr>
<td></td>
<td>All Geology and Geophysics students are recommended to purchase the following items: a pair of compasses; set squares; protractor; pencils (including coloured); eraser; University-approved calculator.</td>
</tr>
<tr>
<td></td>
<td>Geology and Geophysics students will also need to provide their own walking boots, waterproof clothing, and a rucksack; some students purchase a ‘Weather writer’ which affords more protection for maps in wet weather.</td>
</tr>
<tr>
<td></td>
<td>Some of the items not included in the induction pack can be purchased from the department/University. Please visit Room 161/05, Level 1, NOCS.</td>
</tr>
</tbody>
</table>

Field course clothing
You will need to wear suitable clothing when attending field courses, e.g. waterproofs, walking boots. You can purchase these from any source.

Printing and Photocopying Costs
Coursework such as essays, projects and dissertations may be submittable online. However, some items will require submission as a printed copy including some items where it is not possible to submit online. The University printing costs for taught students are currently:
A4 - 4p per side (black and white) or 18p per side (colour)
A4 - 7p double sided (black and white) or 35p double sided (colour)
A3 - 8p per side (black and white) or 35p per side (colour)
A3 - 14p double sided (black and white) or 50p double sided (colour)

Please remember that we are unable to refund any credit that has not been used by the end of your course, so please consider this when topping up your printing/copy account.

You will be given a printing allowance towards the costs of printing lecture hand-outs or you may choose to use digital versions only during lectures.

The University Print Centre also offer a printing and copying service as well as a dissertation/binding service. Current printing and copying costs can be found in http://www.southampton.ac.uk/printcentre/copyrooms/service.page. They also provide a large format printing service, e.g. Academic posters. Current costs can be found in http://www.southampton.ac.uk/printcentre/exhibition/academicposters.page.

In some cases you'll be able to choose modules (which may have different costs associated with that module) which will change the overall cost of a programme to you. Details of such costs will be listed in the Module Profile. Please also ensure you read the section on additional costs in the University's Fees, Charges and Expenses Regulations in the University Calendar available at www.calendar.soton.ac.uk.