This Handbook is for the use of full-time and part-time undergraduates enrolled on the following programmes:

- BSc Biology
- BSc Ecology & Conservation
- BSc Zoology
- BSc Biochemistry
- BSc Biomedical Sciences
- BSc Pharmacology
- BSc Biology, Ecology & Conservation or Zoology with Foundation Year
- BSc Biochemistry, Biomedical Sciences, or Pharmacology with Foundation Year
- Master of Biomedical Sciences (MBiomed Sci)
- Master of Biochemistry (MBiochem)
- Master of Neuroscience (MNeurosci)
- Master of Biology (MSci Biology)
- Master of Zoology (MSci Zoology)
Disclaimer

This information is issued on the condition that it does not form part of any contract between the University of Southampton and any student. The information given has been made as accurate as possible at the time of publication, but the University reserves the right to modify or alter, without any prior notice, any of the contents advertised. It should therefore be noted that it may not be possible to offer all modules or components of a programme in each academic session. This handbook is available in alternative formats on request.
Practicals and Third Year project choices.. 14
Tutors... 15
Tutorials – First Year.. 15
Lecture Recordings .. 17
Transferable Skills .. 18
How to Pass ... 18
Weighting of Parts and Degree Classification ... 18
Classification Algorithm .. 18
The Marking Scheme ... 19
Past exam papers ... 19
Principles Governing Assessment .. 21
Prizes ... 21
FINAL YEAR .. 22
Working Out-of-hours ... 22
Sign Off Form .. 22

PROGRAMME PATHWAYS AND MODULE CHOICES .. 23

Biology, Ecology & Conservation, Zoology ... 23
BSc Biology .. 23
BSc Zoology ... 24
BSc Ecology & Conservation .. 25
MSci Biology .. 27
MSci Zoology .. 31
MSci Ecology & Conservation .. 30
BSc Biology, Ecology & Conservation or Zoology with a ‘Minor’ subject .. 40
Biomedical Sciences, Biochemistry, Pharmacology, Neuroscience .. 42
BSc Biomedical Sciences ... 42
BSc Biochemistry ...
BSc Pharmacology
Master of Biomedical Sciences (MBiomed Sci)

Master of Biochemistry (MBiochem) ... 49

Master of Neuroscience (MNeuroscience) ... 52

DESCRIPTION OF MODULES .. 58
IMPORTANT DATES

Semester 1: Thursday 27 September 2018- Saturday 26 January 2019
Semester 2: Monday 28 January 2019 - Saturday 15 June 2019

Christmas vacation: Sunday 16 December 2018 - Sunday 6 January 2019
Easter vacation: Sunday 31 March 2019 - Sunday 28 April 2019

Autumn term: Thursday 27 September 2018 - Saturday 15 December 2018
Spring term: Monday 7 January 2019 - Saturday 30 March 2019
Summer term: Monday 29 April 2019 - Saturday 15 June 2019

Examinations: Semester 1 exams: Monday 14 January - Friday 25 January 2019 (but possibly including Saturday 19 and 26 January)

Semester 2 exams: Monday 20 May - Friday 7 June 2019 (excluding Bank Holiday Monday 27 May but possibly including Saturday 25 May and 1 June)

Supplementary exams: Monday 19 August - Friday 30 August 2019 (excluding Bank Holiday Monday 26 August but possibly including Saturday 24 August)
<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Telephone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Melissa Andrews</td>
<td>LSB</td>
<td>023 8059 2432</td>
<td>M.R.Andrews@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Christopher Bell</td>
<td>SGH</td>
<td>C.G.Bell@soton.ac.uk</td>
<td></td>
</tr>
<tr>
<td>Dr Matthew Bellamy</td>
<td>LSB</td>
<td>023 8059 5569</td>
<td>m.bellamy@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Charlie Birts</td>
<td>LSB</td>
<td>023 8059 4423</td>
<td>C.N.Birts@soton.ac.uk</td>
</tr>
<tr>
<td>Professor John Chad</td>
<td>LSB</td>
<td>023 8059 4292</td>
<td>jchad@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Mark Chapman</td>
<td>LSB</td>
<td>023 8059 4396</td>
<td>M.Chapman@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Claire Clarkin</td>
<td>LSB</td>
<td>023 8059 4273</td>
<td>C.E.Clarkin@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Jane Cleal</td>
<td>LSB</td>
<td>023 8120 8663</td>
<td>J.K.Cleal@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Mark Coldwell</td>
<td>LSB</td>
<td>023 8059 4342</td>
<td>M.Coldwell@soton.ac.uk</td>
</tr>
<tr>
<td>Prof. Max Crispin</td>
<td>LSB</td>
<td>023 8059 4268</td>
<td>M.D.Crispin@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Katrin Deinhardt</td>
<td>LSB</td>
<td>023 8059 4353</td>
<td>K.Deinhardt@soton.ac.uk</td>
</tr>
<tr>
<td>Dr James Dillon</td>
<td>LSB</td>
<td>023 8059 4354</td>
<td>J.C.Dillon@soton.ac.uk</td>
</tr>
<tr>
<td>Prof Nullin Divecha</td>
<td>LSB</td>
<td>023 8059 9007</td>
<td>N.Divecha@soton.ac.uk</td>
</tr>
<tr>
<td>Professor Patrick Doncaster</td>
<td>LSB</td>
<td>023 8059 4352</td>
<td>cpd@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Declan Doyle</td>
<td>LSB</td>
<td>023 8059 4307</td>
<td>D.A.Doyle@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Marc Dumont</td>
<td>LSB</td>
<td>023 8059 4369</td>
<td>M.G.Dumont@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Salah Elias</td>
<td>LSB</td>
<td>023 8059 9295</td>
<td>S.K.Elias@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Rob Ewing</td>
<td>LSB</td>
<td>023 8059 4401</td>
<td>Rob.ewing@soton.ac.uk</td>
</tr>
<tr>
<td>Professor Keith Fox</td>
<td>LSB</td>
<td>023 8059 4374</td>
<td>K.R.Fox@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Jane Gibson</td>
<td>LSB</td>
<td>023 80594344</td>
<td>J.Gibson@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Jasmin Godbold</td>
<td>NOC</td>
<td>023 8059 8222</td>
<td>J.A.Godbold@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Diego Gomez-Nicola</td>
<td>SGH</td>
<td>023 8120 5358</td>
<td>D.Gomez-Nicola@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Neil Gostling</td>
<td>LSB</td>
<td>023 8059 8141</td>
<td>N.J.Gostling@soton.ac.uk</td>
</tr>
<tr>
<td>Professor Lindy Holden-Dye</td>
<td>LSB</td>
<td>023 8059 9006</td>
<td>lmhd@soton.ac.uk</td>
</tr>
<tr>
<td>Professor Keith Jones</td>
<td>LSB</td>
<td>023 8059 4726</td>
<td>K.T.Jones@soton.ac.uk</td>
</tr>
<tr>
<td>Professor Bill Keevil</td>
<td>LSB</td>
<td>023 8059 4726</td>
<td>cwk@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Lex Kraaijeveld</td>
<td>LSB</td>
<td>023 8059 3436</td>
<td>arkraa@soton.ac.uk</td>
</tr>
<tr>
<td>Professor Karen Lillycrop</td>
<td>SGH</td>
<td>023 8120 5259</td>
<td>kal@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Judith Lock</td>
<td>LSB</td>
<td>023 8059 4312</td>
<td>J.E.Lock@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Alan Marchant</td>
<td>LSB</td>
<td>023 8059 4363</td>
<td>A.Marchant@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Rebecca Morris</td>
<td>LSB</td>
<td>023 8059 8144</td>
<td>R.J.Morris@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Amrit Mudher</td>
<td>LSB</td>
<td>023 8059 4389</td>
<td>A.Mudher@soton.ac.uk</td>
</tr>
<tr>
<td>Professor Vincent O’Connor</td>
<td>LSB</td>
<td>023 8059 7651</td>
<td>voconno@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Kelvin Peh</td>
<td>LSB</td>
<td>023 8059 4367</td>
<td>K.Peh@soton.ac.uk</td>
</tr>
<tr>
<td>Professor Hugh Perry</td>
<td>SGH</td>
<td>023 8120 6968</td>
<td>vhp@soton.ac.uk</td>
</tr>
<tr>
<td>Professor Guy Poppy</td>
<td>LSB</td>
<td>023 8059 2432</td>
<td>gmp@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Marcin Przewloka</td>
<td>LSB</td>
<td>023 8059 4416</td>
<td>Marcin.Przewloka@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Orly Razgour</td>
<td>LSB</td>
<td>023 8059 2932</td>
<td>Orly.Razgour@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Bjorn Robroek</td>
<td>LSB</td>
<td>023 8059 7087</td>
<td>Bjorn.Robroek@soton.ac.uk</td>
</tr>
<tr>
<td>Dr David Rusling</td>
<td>LSB</td>
<td>023 8059 28143</td>
<td>D.A.Rusling@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Hannah Siddle</td>
<td>LSB</td>
<td>023 8059 4202</td>
<td>H.V.Siddle@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Paul Skipp</td>
<td>LSB</td>
<td>023 8059 24204</td>
<td>pjss@soton.ac.uk</td>
</tr>
<tr>
<td>Dr Neil Smyth</td>
<td>SGH</td>
<td>023 8120 6826</td>
<td>N.R.Smyth@soton.ac.uk</td>
</tr>
<tr>
<td>Professor Gail Taylor</td>
<td>LSB</td>
<td>023 8059 2335</td>
<td>g.taylor@soton.ac.uk</td>
</tr>
<tr>
<td>Professor Jessica Teeling</td>
<td>SGH</td>
<td>023 8120 5396</td>
<td>J.Teeing@soton.ac.uk</td>
</tr>
</tbody>
</table>
LSB: Life Sciences Building 85, SGH: Southampton General Hospital, NOC: National Oceanography Centre

Contacting Academic Staff

Staff are expected to respond to emails from you between 9 am - 6 pm weekdays, and within 3 working days (i.e. not including a weekend, University closure bank holiday) during term time. This also applies to responses on Piazza, posting Panopto recordings, and so forth. Of course, many staff will respond to you sooner, often the same day, and it may be outside of these work hours that you receive a response. There will be exceptions to this rule, as staff may be away from the University with limited access to their email. On such occasions staff will post an out-of-office reply in their email system so that you are aware of the likely delay. You should only use your University of Southampton email account to avoid problems associated with spam filters.

In a crisis situation the First Support team are available during office hours and provide support for students who may be facing difficulties in their life or dealing with a crisis; to contact the team call 023 8059 7488 or email firstsup@soton.ac.uk If you need urgent support between 6 pm and 8 am, Student Services, in conjunction with University Security, provide an Out of Hours service. Please contact 023 8059 2811.
Head of Biological Sciences
Professor Lindy Holden-Dye Phone 023 8059 9006, email lmhd@soton.ac.uk

Deputy Head of Education
Dr Mark Coldwell Phone 023 8059 4324, email M.Coldwell@soton.ac.uk

Director of Programmes
Dr Alan Marchant Phone 023 8059 4363, email A.Marchant@soton.ac.uk

Programme Leaders
Biology (BSc and MSci) Dr Judith Lock Phone 023 8059 4312, email J.E.Lock@soton.ac.uk
Ecology & Conservation (BSc and MSci) Dr Neil Gostling Phone 023 8059 8141, email N.J.Gostling@soton.ac.uk
Zoology (BSc and MSci) Dr Neil Gostling Phone 023 8059 8141, email N.J.Gostling@soton.ac.uk
Biochemistry (BSc and MBiochem) Dr Hannah Siddle Phone 023 8059 4202, email H.V.Siddle@soton.ac.uk
Biomedical Sciences (BSc and MBiomedSci) Dr Neil Smyth Phone 023 8120 6826, email N.R.Smyth@soton.ac.uk
MNeuroscience Prof. John Chad Phone 023 8059 4292, email jchad@soton.ac.uk
Pharmacology Prof. John Chad Phone 023 8059 4292, email jchad@soton.ac.uk

International Support Tutors (for International and EU students) Dr Mariana Vargas-Caballero Phone 023 8059 5998, email M.Vargas-Caballero@soton.ac.uk

Faculty Academic Registrar Gina Armfield Phone 023 8059 5069, email R.S.Armfield@soton.ac.uk

Student Administration and Assessment Claire Morgans Phone 023 8059 3642, email cll@soton.ac.uk

Curriculum & Quality Assurance Team Leader Tracy Barnes Phone 023 8025261, email tb6@soton.ac.uk

Student Office Team (Administration and Assessment) For general enquiries and notification of absence Phone 023 8059 4206 Email: sobs-studentoffice@soton.ac.uk
IMPORTANT INFORMATION

Feedback, From you to us:

We value your feedback. It is our way of improving what we do. Please provide us with feedback by:

1. Completing Module Evaluation Questionnaires. These are questionnaires that ask you how you have enjoyed the module. Emails will be sent to you at the end of the module to remind you to do this.
2. Giving feedback to your student representatives. These are voted in by you for all our degree programmes. If you do not know who they are, ask!
3. Using biofeedback@soton.ac.uk for any issues you want to make us aware of.

Feedback, From us to you:

You will receive feedback on your academic performance in a range of different ways. Details on how and when will be provided at a module level. General feedback on exam results and how to improve your exam technique can be obtained from your personal academic tutor. If you are not satisfied with the feedback you receive during a module, you should contact the module coordinator and/or specific lecturer(s) in the first instance. For more specific feedback on individual module marks you should make an appointment with the appropriate module co-ordinator who may disclose the marks for individual questions on a paper and also pass on any relevant comments made on a script by the marker. After the semester one exams second and third year students are allowed to view their exam scripts and third year students may see the comments made about their work by the supervisor of their first semester project (where relevant), or comments about intermediate pieces of work such as progress reports or presentations.

For any unresolved issues please email biofeedback@soton.ac.uk

Additional Costs

Information on generic additional costs associated with your programme e.g. calculators can be found via SUSSED ‘Programme Specific Information’, these cover all modules. Any other additional costs associated with a particular module will be clearly identified via the Module Descriptions within the Biological Sciences web pages. The modules identified as having other additional costs are:

- BIOL1001 Experimental and Field Biology
- BIOL2041 New Forest Field Course
- BIOL3061 Field Research Project
- BIOL3062 Short Field Research Project
- BIOL3070 Tropical Ecology Field Course
- BIOL6069 Advanced Field Research Project

Please read this section carefully. If you have any uncertainties, please contact the Student Office for advice.

International Students

If English is a foreign language for you and you are experiencing difficulty with comprehension or communication then you should contact the Centre for Language Study. If you need it, you can get help with English language and how to prepare for written assessments from sessions run for students by the Centre for Language Study www.soton.ac.uk/clsl. Other advice can be obtained from The Advice Centre within the Students Union SUSU support
Find more on SUSSED and ‘Link to information and services’ tab.
Lost Property

If you have lost property in Building 85 make enquiries at its Reception; if you have lost property elsewhere in the University you can enquire at the reception desk in the Student Services Centre.

If you lose your ID card you must report this to the Student Office. You will only be eligible for a free replacement card if you have a police crime reference number; otherwise you have to pay £10.

Biological Sciences Careers Blackboard site

Specifically tailored for you: see Biological Sciences Undergraduate Information Blackboard
Also see the Careers and Employability Services website.

GET INVOLVED!

Student Staff Liaison

See the Biological Sciences Undergraduate Information Blackboard site for your student reps and further information.

BioSoc

BioSoc is run by students primarily, but not exclusively, for Biological Sciences students and arranges educational, social and sporting events. BioSoc information is found via the SUSU (Southampton University Students Union) also on Blackboard; email biosoc@soton.ac.uk
HEALTH AND SAFETY

Internal Emergency number 999 or 3311
Public Emergency Services 91-999 or 91-112

Fire Safety

• Weekly fire bell test every Monday between 11.15-11.45
• Building fire alarm is a continuous sounder
• At all other times, evacuate immediately if fire alarm sounds via the nearest fire escape
• Walk, do not run, do not use lifts
• Meet at assembly point- location Library Square
• Await further instruction – do not re-enter the building or leave assembly point until told to do so by either the senior fire wardens or Hampshire Fire and Rescue

Safety in the Laboratory

Special personal consideration: If you suffer any medical condition that may affect your own safety or that of others in the laboratory then it is your duty to inform the Student Office. This information will be treated in the strictest confidence and will only be divulged to others with your agreement.

Talks on H&S: New students will be given an introductory talk on Health and Safety. Other Safety talks for undergraduates include Safety in Field Work and Lone Working, will be given in the Spring to all second year undergraduates who wish to carry out field work over the summer for their third year projects. Third year lab project students will receive one before beginning their lab work (so will depend on the timing of the project). Fourth year students who carry out laboratory work as part of their practical project will undergo a further briefing on health and safety in research labs in October, prior to beginning the laboratory project.

H&S in Practicals: All Biological Sciences (BIOL) modules are risk-assessed and every module booklet has general safety advice. The person taking a particular class is responsible for the safety of the class content and emergency actions. You will be given advice about any precautions which have to be taken for any particular procedure at the beginning of the practical class.

Please note during practical classes:
 DO wear a laboratory coat for all practical work.
 DO report all injuries suffered in the lab.
 DO report any hazards that you see.

 DO NOT EAT OR DRINK in the lab.
 DO NOT wear open-toed sandals or flip flops to lab classes.
 DO NOT use personal music players or mobile phones while in the lab.

If you are uncertain about any procedure, PLEASE ASK A MEMBER OF STAFF

If you need further advice please contact Mark Jones M.S.Jones@southampton.ac.uk, the Building 85 Safety Officer in the first instance. Full details are contained in the Biological Sciences Safety Policy available in the teaching laboratories.

Access to Building 85 and First Aid

As a general rule, you only have access to levels 1, 2 and the meeting rooms on level 6 for tutorials of Building 85. There are trained First-Aiders in Building 85. Their contact details are located at key points in the Building. Familiarise yourself with identifying these notices and be aware of their location.
YOUR DEGREE PROGRAMME

Your degree programme specifications can be viewed via SUSSED under ‘Programme Specific Information’.

How much work will I be doing?

Each degree is made up of individual modules. The amount of work associated with a module is given a value in ECTS points (European Credit Transfer Scheme). ECTS points are based on a notional study time of 20hrs per point at the appropriate level of study. Most modules are worth 7.5 ECTS, and hence have an expectation of 150hrs of total study per module. 60 ECTS points (i.e. eight 7.5 ECTS modules) are taken in each year of study and normally, four modules are taken in each of the two semesters of the academic year. This means that by the end of your degree you will have taken a total of 180 ECTS required for a 3 year programme and 240 ECTS for a 4 year programme. This is normally made up as follows: Part 1 60 ECTS, Part 2 60 ECTS, Part 3 60 ECTS and Part 4 60 ECTS.

Formal teaching takes place between 9.00 am and 6.00 pm on Monday, Tuesday, Thursday and Friday. On Wednesdays, formal teaching is between 9.00 am and 1.00 pm. On top of formal contact hours you are expected to undertake independent study. Thus for a 7.5 ECTS module, you should spend a total of 150 hours, made up of contact and non-contact time. This means if you are taking 4 modules a week, you should be spending approximately 40 hours on academic study each week.

Special considerations and extension requests

If you feel your studies are affected by circumstances beyond your control (e.g. accident or illness, whether physical or mental; bereavement of a family member or close friend; significant adverse personal circumstances), there are two options open to you, plan A and plan B.

Plan A. For coursework and other continuous assessment (e.g. dissertations), you can request an extension. An extension request form is available from the student office. You need to request an extension prior to the original deadline if at all possible, give specifics of the work you’re asking an extension for, the length of extension being requested and add evidence to support your request. If you cannot provide evidence, you need to discuss your circumstances with your personal tutor or the senior tutor, and get them to sign off the form.

Plan B. If an extension request is not possible (e.g. for an exam), or does not sufficiently deal with your circumstances, you can claim for special considerations. In order to do this, you need to fill in and submit a special considerations form (available from the student office) prior to the exam board meetings which take place approximately 2 weeks after the end of the exam periods. On this form, you need to detail your circumstances, specify the assessment(s) affected, and provide relevant evidence. If you cannot provide evidence, you need to discuss your circumstances with your personal tutor or the senior tutor, and get them to sign off the form.

Special considerations claims where an extension was possible but wasn’t requested are less likely to be granted so you should follow plan A rather than plan B whenever possible.

When an extension request is approved, the issue is considered to have been dealt with, so a further extension request for the same piece of work needs to provide new evidence.

Special considerations do not automatically roll over from one semester to another, so if circumstances persist into the next semester or into the next academic year, special considerations have to be applied for again for that semester (with new evidence).

Further information can be found on the Biological Sciences Undergraduate Information site on Blackboard - Extension Requests & Special Considerations Guidance.
Year One Marks Matter

Your performance in the first year is important because:
(1) The second year study abroad module requires good performance in Year 1 modules
(2) Your final year projects may be allocated on ranking in year 1 performance.
(3) Detailed marks for all three years are provided on your transcript when you graduate and potential employers will see them.
(4) Staff writing your references for employment will refer to your performance across all years.

Back Tracking

Back tracking and forward tracking by one level are allowed for up to 15 ECTS per year, with the authorisation of your personal academic tutor.

Language Modules

You may take Language modules run by the Centre for Language Study within the Faculty of Humanities, up to a maximum of 15 ECTS per year (7.5 ECTS in the third year of Biochemistry, Biomedical Sciences, Neuroscience and Pharmacology degrees). Language modules are offered at stages 1-7 depending on your prior knowledge, whether it is as a complete novice or near-native speaking level. Students in years 1 and 2 can select language modules at stages 1-7 but students in year 3 cannot select modules below stage 4.

UOSM modules – Flexible Learning

UOSM (University of Southampton Modules) coded modules are specifically designed to allow students to broaden their degree, often assuming no prior knowledge. Generally, students can only take a maximum of one UOSM module per year. For more information, see the Flexible Learning at Southampton website.

Part-time Study

If you wish to study part-time you must meet with your personal academic tutor in the first instance for advice. The regulations for part-time study are found via the University Calendar. If you require any further information please contact the Student Office for advice.

Year in Employment

At the end of your second year it is possible to spend a year in employment. Students normally apply for this during semester one of their second year. This provides an opportunity for you to gain employability skills. We usually start organising these placements at the start of your second year. For further details contact Dr David Tumbarello, email: D.A.Tumbarello@soton.ac.uk

Practicals and Third Year project choices

Practical sessions will help to develop your understanding of a topic. Attendance is essential, both for mastering module-specific knowledge and techniques, but also as preparation for research projects in later years. In some modules, attendance may be required for you to get practical marks. Practicals are narrowly focused on just one subject area and are supervised by a specialist member of the teaching staff,
with assistance from technicians and demonstrators (postgraduate students) who will be glad to help with any queries relating to the topic in question.

Some practical topics will continue for several weeks, as ‘mini projects’. It is in your third year, however, that you will undertake your most substantial piece of research under the supervision of a member of staff (for Integrated Masters students there will be an additional research project in your fourth year). Third year projects can be taken in a number of ways including laboratory, field, or in-silico research projects. Non-practical based literature research projects, Bioscience Education, Science Communication, Bioscience Business and Bioscience Ethics projects are also available. Around the Easter break in your second year we provide you with a list of preferred options for your research project(s). The final decision on which project you will do will be taken by the module coordinators. Decisions on project allocation are taken on the basis of your previous exam marks, with higher scoring students given a higher ranking.

Data-sharing policy

During practicals you will normally collect relevant data either on your own or as part of a pair or small group. These data are then used for the practical write-up. If for whatever reason you cannot use the data you have collected yourselves (i.e. alone or as part of their pair or group), you can only use data collected by others if this is explicitly allowed by the module coordinator. In some cases, the module coordinator will upload (e.g. to Blackboard) data to be used with the explicit instruction to use these if necessary. In all other cases, you need to contact the module coordinator for permission to use data collected by other students. If data from other students are used, this needs to be stated explicitly in the practical write-up. Unauthorised and/or uncredited use of other students’ data is regarded as a breach of academic integrity.

Tutors

At the start of term, you will be allocated to an academic member of staff, who will act as your personal academic tutor. Your personal academic tutor will remain in that role until you graduate, and is your first point of call for academic or pastoral issues. Dr Lex Kraaijeveld will be the senior tutor for Biological Sciences, for issues that cannot be resolved with your personal academic tutor. In addition, Prof Lindy Holden-Dye and Dr Hannah Siddle will act as senior tutor in situations where a student would prefer to talk to a female academic and Dr Alan Marchant will act as a further back-up or alternative.

Tutorials – First Year

During your first year you will attend tutorials run by your personal academic tutor. The main aim of these tutorials is to reinforce the lecture material, learn workplace skills and provide some academic training. You may be set essays or problem-based questions that have to be handed in prior to the tutorial; discussion of your essay and of the subject area may form the basis for the tutorial. Tutorial work when it is a requirement of a module is partly determined by your personal academic tutor, so what is done, and how it will be done, will vary between tutors. We encourage you to submit your tutorial work as word-processed copy, but at least one piece of work must be handwritten, so that we can judge the standard of legibility.
Tutorials (Years 2 and above)

You will be required to attend tutorials in your second year with a range of tutors. These tutorials are independent of any module, but the content of them will help in your understanding of the modules you are undertaking, as you will be able to select tutorials that cover topics that align with lecture courses. A record of attendance and performance in second year tutorials will be kept.

In Year 2 and above you will continue with the same personal academic tutor. However, timetabled group tutorials will no longer take place. Instead you will be encouraged to have one-to-one meetings with your tutor. There will be three major themes to discuss:

(i) Careers. You may want to discuss topics such as vacation scholarships and the Year in Employment-both of which can aid future employability following your graduation. You may want also to discuss career paths following graduation.
(ii) Module Choices. You should use your tutor to help you in deciding what modules are right for you.
(iii) Academic Performance. You should discuss with your tutor how you are performing in modules, and get advice over how to improve particular skills you think you need help with. Tutors can be a good source of feedback as to how to improve your marks.

Your responsibilities
(i) It is your responsibility to make tutor contact to request a meeting at all times in the academic year.
(ii) If your tutor fails to respond to your request after 3 working days, then resend your email copying your email to Dr Alan Marchant (Director of Programmes) at A.Marchant@soton.ac.uk.

Timetable

Here is a recommended timetable. It is your choice as to when to have a meeting, and this will vary dependent on your needs. If you need to discuss a particular issue with your tutor, then do approach her/him immediately- do not feel constrained by this timetable. Equally do not feel compelled to have a meeting if you do not want one. However, we recommend having them. If you decide not to have a meeting, then please do drop your tutor an email to let them know you are okay.

<table>
<thead>
<tr>
<th>All 3 year BSc Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorial</td>
</tr>
<tr>
<td>Year 2</td>
</tr>
<tr>
<td>Tutorial 1</td>
</tr>
<tr>
<td>Tutorial 2</td>
</tr>
<tr>
<td>Tutorial 3</td>
</tr>
<tr>
<td>Tutorial 4</td>
</tr>
<tr>
<td>Year 3</td>
</tr>
<tr>
<td>Tutorial 5</td>
</tr>
<tr>
<td>Tutorial 6</td>
</tr>
<tr>
<td>Tutorial 7</td>
</tr>
</tbody>
</table>
All 4 year integrated Masters Degrees

<table>
<thead>
<tr>
<th>Tutorial</th>
<th>When</th>
<th>Suggested discussion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorial 1</td>
<td>Semester 1 Start</td>
<td>Year ahead: Semester 1 module choices, Semester 1 exams. Career ideas and plans. Year in Employment, Study Abroad module; Summer vacation scholarships (if applicable).</td>
</tr>
<tr>
<td>Tutorial 2</td>
<td>Semester 2 Start</td>
<td>Semester 1 exam results. Semester 2 module progress.</td>
</tr>
<tr>
<td>Tutorial 3</td>
<td>Semester 2-mid</td>
<td>Year 3 module choices when options become available.</td>
</tr>
<tr>
<td>Tutorial 4</td>
<td>Semester 2</td>
<td>Review academic progress. Semester 2 performance review (if held after exams) or revision strategy (if held before exams). Summer plans.</td>
</tr>
<tr>
<td>Year 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorial 5</td>
<td>Semester 1 Start</td>
<td>Year ahead: Semester 1 module choices, Semester 1 exams. Career ideas and plans. Year in employment (if applicable), Study Abroad module (if applicable). Summer vacation scholarships (if applicable).</td>
</tr>
<tr>
<td>Tutorial 6</td>
<td>Semester 2 Start</td>
<td>Semester 1 exam results. Semester 2 module progress.</td>
</tr>
<tr>
<td>Tutorial 7</td>
<td>Semester 2-mid</td>
<td>Year 4 module choices when options become available.</td>
</tr>
<tr>
<td>Tutorial 8</td>
<td>Semester 2</td>
<td>Review academic progress over the year. Performance in Semester 2 exams (if held after exams) or revision strategy (if held before exams). Plans for summer.</td>
</tr>
<tr>
<td>Year 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tutorial 9</td>
<td>Semester 1 Start</td>
<td>Year ahead. Career ideas and plans.</td>
</tr>
<tr>
<td>Tutorial 10</td>
<td>Semester 2 Start</td>
<td>Semester 1 exam results.</td>
</tr>
<tr>
<td>Tutorial 11</td>
<td>End Year</td>
<td>Career plans.</td>
</tr>
</tbody>
</table>

Senior tutor

In addition to your personal tutor, you have access to a Dr Lex Kraaijeveld as the senior tutor for the School of Biological Sciences. The Senior Tutor can be approached if you want to talk to someone other than your personal tutor, for whatever reason. In addition, in cases where you would prefer to talk to a female member of staff in the role of Senior Tutor, Prof. Lindy Holden-Dye or Dr Hannah Siddle can also be approached. Their contact details are given in the table below.

<table>
<thead>
<tr>
<th>Name</th>
<th>Telephone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lex Kraaijeveld</td>
<td>023 8059 3436</td>
<td>A.R.Kraaijeveld@soton.ac.uk</td>
</tr>
<tr>
<td>Lindy Holden-Dye</td>
<td>023 8059 9006</td>
<td>L.M.Holden-Dye@soton.ac.uk</td>
</tr>
<tr>
<td>Hannah Siddle</td>
<td>023 8059 4202</td>
<td>H.V.Siddle@soton.ac.uk</td>
</tr>
</tbody>
</table>

Lecture Recordings

All modules run by staff in Biological Sciences will normally be recorded via the University’s Panopto system. These recordings can be played back via the module’s Blackboard site. Panopto recordings are
Transferable Skills

Over your three or four years at University you will develop a number of transferable skills which will be of benefit to you and your future employers. These include:

- Safety Awareness
- Laboratory Skills
- Analysis and Problem Solving. These skills are essential in all aspects of your life after University.
- IT Skills
- Written Communication. Although much of modern communication is digitally based, the skills required to write clearly and concisely are very important.
- Oral Communication. The ability to present ideas and to participate in group discussions is a skill highly sought after by employers.
- Planning Skills. Time and data planning skills are essential for use in all activities, benefitting employers and employees.
- Teamwork. Throughout your time at University you will develop team working skills that will transfer into whichever career you pursue.

How to Pass

Firstly, all CORE modules must be passed (this is a minimum mark of 40%)

Then, you will progress to the next academic year (or graduate) if your overall average for the year is 40% or over, but only if:
1) All non-core modules have a mark of 25% or above (this is termed the Qualifying Mark)
2) At least six of the eight modules are above 40%. If you have two non-core modules between 25 and 40% you can “compensate” and progress.

Any module less than 25% will have to be retaken. Unless there are extenuating circumstances the marks for any resit will be capped at 40%

Weighting of Parts and Degree Classification

Part I (your first year) work is excluded from the final degree classification. A weighting of 0:1:2 is used for the three Parts of an Honours degree programme, and a weighting of 0:1:2:2 for the four Parts of an integrated Masters programme. This is in addition to weighting by credit points (for example, where Parts III and IV do not contain the same number of credit points).

At the end of your final year you will receive your degree, which will be classified based on your weighted marks according to the University Algorithm, the ranges are:

<table>
<thead>
<tr>
<th>Classification</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>First class:</td>
<td>70% or above</td>
</tr>
<tr>
<td>Upper second class:</td>
<td>60% - 69%</td>
</tr>
<tr>
<td>Lower second class:</td>
<td>50% - 59%</td>
</tr>
<tr>
<td>Third class:</td>
<td>40% - 49%</td>
</tr>
<tr>
<td>Fail:</td>
<td>0% - 39%</td>
</tr>
</tbody>
</table>

Classification Algorithm

The class of degree awarded will be that within which the average falls. OR it can be one class higher IF the average mark is within 2% of the higher class, AND at least 50% of the credit points, weighted by Part, is derived from module marks in the higher class or above.
The Marking Scheme

In Biological Sciences there are common ranges and class boundaries used for:

- Marking individual answers
- Marking whole written examination papers
- Marking modules where practical or coursework forms part or the whole of the assessment

Where work is not quantifiably marked, we use the following % scheme:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>100, 95, 90, 85, 80, 75, 72</td>
</tr>
<tr>
<td>Upper second</td>
<td>68, 65, 62</td>
</tr>
<tr>
<td>Lower second</td>
<td>58, 55, 52</td>
</tr>
<tr>
<td>Third</td>
<td>48, 45, 42</td>
</tr>
<tr>
<td>Fail</td>
<td>38, 35, 32, 25, 15, 5, 0</td>
</tr>
</tbody>
</table>

The marking criteria as given on the next page include:

- Knowledge & Accuracy (relevant to question set)
- Critical understanding (evidence based arguments, concepts and/or data handling)
- Evidence of reading (text book, research papers etc.)
- Presentation (structure, ability to communicate)

We use this same marking scheme for all examinations and coursework in each year of your degree programme. The marks reflect the skills that must be displayed within each range of the scheme and will help you evaluate your progress and level of attainment at various stages of your degree programme.

Past exam papers

Copies of past examination papers are available through SUSSED and the library. Please be aware that exam formats can be significantly different from one year to the next. Module coordinators will advise on any changes.

Late submission penalties

The University penalty for submission of late work is

<table>
<thead>
<tr>
<th>University Working Days late</th>
<th>Mark</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(final agreed mark) * 0.9</td>
</tr>
<tr>
<td>2</td>
<td>(final agreed mark) * 0.8</td>
</tr>
<tr>
<td>3</td>
<td>(final agreed mark) * 0.7</td>
</tr>
<tr>
<td>4</td>
<td>(final agreed mark) * 0.6</td>
</tr>
<tr>
<td>5</td>
<td>(final agreed mark) * 0.5</td>
</tr>
<tr>
<td>More than 5</td>
<td>Zero</td>
</tr>
<tr>
<td>Class</td>
<td>%</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
</tr>
</tbody>
</table>
| Upper 1st | 90, 95, 100 | **Outstanding work**
Outstanding, accurate and wide-ranging knowledge and understanding of the topic covering all relevant aspects; evidence of substantial outside reading; superb organisation and presentation; outstanding analysis and/or problem-solving; outstanding evidence of insight and critical evaluation |
| Middle 1st | 80, 85 | **Excellent work**
Excellent, accurate and wide-ranging knowledge and understanding of the topic; evidence of a significant level of outside reading; excellent organisation and presentation; excellent analysis and/or problem-solving; good evidence of insight and critical evaluation |
| Lower 1st | 72, 75 | **Very good work**
Very good accurate and wide-ranging knowledge and understanding of the topic; evidence of some outside reading; very good organisation and presentation; very good analysis and/or problem-solving; some evidence of insight and critical evaluation |
| 2.1 | 62, 65, 68 | **Good work**
Good, accurate and reasonably detailed knowledge and understanding of the topic, may have some omissions but with few errors; limited evidence of outside reading; well organised and presented; good analysis and/or problem-solving; limited evidence of insight and critical evaluation |
| 2.2 | 52, 55, 58 | **Satisfactory work**
Satisfactory knowledge and understanding of the topic, covering at least half of the major topics, but with some errors and/or omissions; little or no evidence of outside reading; satisfactory organisation and presentation; satisfactory analysis and/or problem-solving; little or no evidence of insight and critical evaluation |
| 3rd | 42, 45, 48 | **Adequate work**
Basic knowledge and understanding, with significant errors and/or omissions; no evidence of outside reading; basic organisation and presentation; passable analysis and/or problem-solving |
| Marginal fail | 32, 35, 38 | **Inadequate work**
Inadequate level of relevant knowledge and understanding, with major inaccuracies; no evidence of outside reading; not sufficient organisation and presentation; inadequate analysis and/or problem-solving; partial focus on the topic |
| Fail | 10, 15, 25 | **Very inadequate work**
Information mostly irrelevant, few correct or relevant facts present; no evidence of outside reading; badly organised and presented; widespread confusion and incoherence; very little focus on the topic |
| Extreme fail | 0, 5 | **Extremely inadequate work**
Information almost all incorrect and/or irrelevant; no evidence of outside reading; very disorganised and showing confusion and incoherence; very little recognition of the topic |

The aspects of your work given in bold are expected to show progress across your years of study.
Principles Governing Assessment

The examination and assessment procedures at all universities in the UK are designed to allow you to demonstrate how well you understand the subject and how well you can deploy relevant information. Examiners are not interested in seeing whether they can catch you out or make life difficult for you. They want the various assessment and examination procedures to produce fair and objective evidence of your abilities.

Our procedures are designed to provide as fair an evaluation of your work as is possible. In accordance with standard University practice your scripts are anonymous when we mark them. In your second year, a sample of all coursework and exam scripts is moderated by a second examiner and in your final year, all coursework and exam scripts are moderated by a second examiner. We take considerable pains to try to ensure that the assessment process is fair, but it is also expected that students approach assessment in the same spirit. In particular, there is the expectation that all assessed work will be the unaided work of the candidate concerned and that the candidate will have respected not only the regulations governing examinations but also the spirit of the examination process. Examining is something that requires trust between examiner and examinee: trust on the part of the examinee that the exams themselves are fair and that the process of evaluation is fair and unprejudiced; trust on the part of the examiners that the examinee has not attempted to secure unfair advantage or to misrepresent his or her work. In consequence, any breach of such trust is treated with extreme seriousness and may result in the Board of Examiners recommending that penalties be imposed on offenders.

Prizes

The Pauline Thomas Prize is given in memory of a former student who graduated in 1970 and is awarded annually for outstanding performance by a final year student on the MSci Biomedical Sciences, Biochemistry or Neuroscience.

The Society of Physiology Prize is awarded to the student with the best physiological MSci project.

Three *Gerald Kerkut Prizes* are awarded in memory of Professor Kerkut for outstanding performance in year three in Physiology and Biochemistry:
- *The Biomedical Sciences Prize* is awarded to the best student graduating with a BSc in Biomedical Sciences.
- *The Biochemistry Prize* is awarded to the best student graduating with a BSc in Biochemistry.
- *The Pharmacology Prize* is awarded to the best student graduating with a BSc in Pharmacology.

The Biology Prize is awarded to the best student graduating with a BSc in Biology.
The Ecology Prize is awarded to the best student graduating with a BSc in Ecology & Conservation.
The Zoology Prize is awarded to the best student graduating with a BSc in Zoology.

The Royal Society of Biology Prize is awarded to the best student graduating with a MSci in Biology, Ecology & Conservation, or Zoology.
FINAL YEAR

Working Out-of-hours

Please note that there are strict rules for out-of-hours working (before 8 am and after 6 pm Monday-Friday and at any time on weekends or University closure days).

Third and fourth year projects should normally be designed to avoid you having to work out-of-hours. However, if your project supervisor can make a case for it being absolutely necessary for you to be in any non-public area (laboratories, glasshouses, etc) out-of-hours, your supervisor will need to:

a) Identify someone to supervise you in person. On no account will you be allowed to work without close supervision
b) Prepare a Risk Assessment, to include the extra risks of working out-of-hours
c) Arrange for the Biological Sciences Health & Safety Officer, to check and sign off the Risk Assessment
d) Submit a B85 Access Request Form to arrange for your access rights to be amended to Mark Dixon (M.S.Dixon@soton.ac.uk). This requires a minimum two days notice so that the University database can be updated. You should not ask Security personnel to let you into any areas out-of-hours. It is a serious breach of University regulations to loan your ID card to any other person.

Sign Off Form

This applies to all those students undertaking lab projects. When you leave you must complete a form to say that you have left your working area in the lab in good order. You will find this form in the project module miniguide and separately on the module Blackboard site.
PROGRAMME PATHWAYS AND MODULE CHOICES

Biology, Ecology & Conservation, Zoology

BSc Biology

Part 1 (FHEQ Level 4)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

Students will take seven compulsory modules (BIOL1001, BIOL1003, BIOL1004, BIOL1005, BIOL1010*, BIOL1012* and BIOL1020).

In addition one optional module must be chosen. Students without a pass in ‘A-level Chemistry will be enrolled on CHEM1012 as an additional ninth module but may decide whether to take the module or not. If the exam is taken, the outcome will be included on your degree transcript. If you choose not to take the exam this will not prevent you from progressing, but it may limit your choice of module options in subsequent years.

*If you decide at the start of semester 1 to choose either BIOL1022 or BIOL1013 as your elective module then you will have the option to take BIOL1007 and/or BIOL1011 (which include laboratory practicals) in the first semester instead of the corresponding BIOL1010 and/or BIOL1012 (which have ‘dry’ computer practicals) subject to available space on the modules.

Part 2 (FHEQ Level 5)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

Students must take three compulsory modules (BIOL2008, BIOL2001 and BIOL2007)

An additional five elective modules (see tables on page 34-35 generally these are from within Biological Sciences and are described at the end in Section 1 of this handbook. Please note certain modules are prerequisites for specific year three modules. Students have the option of taking a maximum of TWO elective modules (15 ECTS) from another academic unit (not labelled as BIOL). Not more than one UOSM, interdisciplinary elective module can be taken in Part 2. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the BSc Biology degree course, (for details see academic unit web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options.

Part 3 (FHEQ Level 6)

Students must take 60 ECTS which includes 15ECTS of project module(s).
A total of 15 ECTS-worth of project modules must be taken from the available options

Either ONE of the following 15 ECTS modules

BIOL3034 (Laboratory Research Project) or BIOL3058 (Bioscience Business) or BIOL3059 (Bioscience Education) or BIOL3061 (Field Research project), BIOL3069 (In-silico Research Project) or BIOL3071 (External Research project),

OR

TWO of the following 7.5 ECTS modules with one being taken in each semester

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3062 (Short Field Research Project)</td>
<td>BIOL3073 (Bioethics Research Project)</td>
</tr>
<tr>
<td>BIOL3060 (Science Communication)*</td>
<td>BIOL3066 (Extended Science Communication)*</td>
</tr>
<tr>
<td>BIOL3031 (Literature project)**</td>
<td>BIOL3032 (Literature project)**</td>
</tr>
</tbody>
</table>

Note - * BIOL3060 is an essential prerequisite in order to take BIOL3066. ** It is not permitted to take both BIOL3031 and BIOL3032

A further six modules must be selected of which at least four must be BIOL modules which will usually be from those listed in the table on page 36-37. Please note certain modules have prerequisites of specific Year Two modules which should have been taken.

Students have the option of taking up to two elective modules (7.5 ECTS) produced by another academic unit (not labelled as BIOL) or an external UOSM module. Please note that elective modules may be subject to timetabling and other regulations limiting their availability as part of the BSc Biology degree course, (for details see departmental web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options. The pathways within the degree programmes are merely advisory. They are to help students and tutors to plan sensible combinations of modules.

BSc Zoology

Part 1 (FHEQ Level 4)

Students must take 60 ECTS, (eight 7.5 ECTS modules)
Students will take seven compulsory modules (BIOL1001, BIOL1003, BIOL1004, BIOL1005, BIOL1010*, BIOL1012* and BIOL1020).

In addition one optional module must be chosen. Students without a pass in ‘A-level Chemistry will be enrolled on CHEM1012 as an additional ninth module but may decide whether to take the module or not. If the exam is taken, the outcome will be included on your degree transcript. If you choose not to take the exam this will not prevent you from progressing, but it may limit your choice of module options in subsequent years.

*If you decide at the start of semester 1 to choose either BIOL1022 or BIOL1013 as your elective module then you will have the option to take BIOL1007 and/or BIOL1011 (which include laboratory practicals) in the first semester instead of the corresponding BIOL1010 and/or BIOL1012 (which have ‘dry’ computer practicals) subject to available space on the modules.

Part 2 (FHEQ Level 5)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

An additional three elective modules (see tables on page 34-36, generally these are from within Biological Sciences and are described at the end in Section 1 of this handbook. Please note certain modules are prerequisites for specific year three modules. Students have the option of taking a maximum of TWO elective modules (15 ECTS) produced by another academic unit (not labelled as BIOL). Not more than one UOSM, interdisciplinary elective module can be taken in Part 2. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the BSc Zoology degree course, (for details see academic unit web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options.

Part 3 (FHEQ Level 6)

Students must take 60 ECTS in total during the year.

Either ONE of the following 15 ECTS modules

BIOL3034 (Laboratory Research Project) or BIOL3058 (Bioscience Business) or BIOL3059 (Bioscience Education) or BIOL3061 (Field Research project), BIOL3069 (In-silico Research Project) or BIOL3071 (External Research project),

OR

TWO of the following 7.5ECTS modules with one being taken in each semester
Semester 1

<table>
<thead>
<tr>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3062 (Short Field Research Project)</td>
</tr>
<tr>
<td>BIOL3060 (Science Communication)*</td>
</tr>
<tr>
<td>BIOL3031 (Literature project)**</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3073 (Bioethics Research Project)</td>
</tr>
<tr>
<td>BIOL3066 (Extended Science Communication)*</td>
</tr>
<tr>
<td>BIOL3032 (Literature project)**</td>
</tr>
</tbody>
</table>

Note - * BIOL3060 is an essential prerequisite in order to take BIOL3066. ** It is not permitted to take both BIOL3031 and BIOL3032.

A further six modules must be selected of which at least four must be BIOL modules which will usually be from those listed in the table on page 36-39. At least 6 ‘Z’ designated Zoology options must be taken during the year. Please note certain modules have prerequisites of specific year two modules which should have been taken.

Students have the option of taking up to two elective modules (7.5 ECTS) produced by another academic unit (not labelled as BIOL) or an external UOSM module. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the BSc Biology degree course. (For details see departmental web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options. The pathways within the degree programmes are merely advisory. They are to help students and tutors to plan sensible combinations of modules.

BSc Ecology & Conservation

Part 1 (FHEQ Level 4)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

Students will take seven *compulsory* modules (BIOL1001, BIOL1003, BIOL1004, BIOL1005, BIOL1010*, BIOL1012* and BIOL1020).

In addition one optional module must be chosen. Students without a pass in ‘A-level Chemistry will be enrolled on CHEM1012 as an additional ninth module but may decide whether to take the module or not. If the exam is taken, the outcome will be included on your degree transcript. If you choose not to take the exam this will not prevent you from progressing, but it may limit your choice of module options in subsequent years.

*If you decide at the start of semester 1 to choose either BIOL1022 or BIOL1013 as your elective module then you will have the option to take BIOL1007 and/or BIOL1011 (which include laboratory practicals) in the first semester instead of the corresponding BIOL1010 and/or BIOL1012 (which have ‘dry’ computer practicals) subject to available space on the modules.
Part 2 (FHEQ Level 5)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

Students must take five *compulsory* modules (BIOL2001, BIOL2004, BIOL2008, BIOL2041 and BIOL2047)

An additional three elective modules must be chosen (see tables on page 33-34, generally these are from within CFBS and are described at the end in Section 1 of this handbook. Please note certain modules are prerequisites for specific year three modules. Students have the option of taking a maximum of TWO elective modules (15 ECTS) produced by another academic unit (not labelled as BIOL). Not more than one UOSM, interdisciplinary elective module can be taken in Part 2. Please note that elective modules may be subject to timetabling and other regulations limiting their availability as part of the BSc Ecology & Conservation degree course, (for details see academic unit web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options.

Part 3 (FHEQ Level 6)

Students must take 60 ECTS in total during the year.

Either ONE of the following 15 ECTS modules

BIOL3034 (Laboratory Research Project) or BIOL3058 (Bioscience Business) or BIOL3059 (Bioscience Education) or BIOL3061 (Field Research Project), BIOL3069 (In-silico Research Project) or BIOL3071 (External Research Project),

OR

TWO of the following 7.5 ECTS modules with one being taken in each semester

<table>
<thead>
<tr>
<th>Semester 1</th>
<th>Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3062 (Short Field Research Project)</td>
<td>BIOL3073 (Bioethics Research Project)</td>
</tr>
<tr>
<td>BIOL3060 (Science Communication)*</td>
<td>BIOL3066 (Extended Science Communication)*</td>
</tr>
<tr>
<td>BIOL3031 (Literature project)**</td>
<td>BIOL3032 (Literature project)**</td>
</tr>
</tbody>
</table>

Note - * BIOL3060 is an essential prerequisite in order to take BIOL3066. ** It is not permitted to take both BIOL3031 and BIOL3032
A minimum of four modules must be chosen from the following selection

BIOL3009, BIOL3053, BIOL3010, BIOL3056, BIOL3067, BIOL3068, BIOL3070 and BIOL3072

Additional modules must be selected to make up the total requirement of 60ECTS during the year. Please note certain modules have prerequisites of specific year two modules which should have been taken.

Students have the option of taking up to two elective modules (7.5 ECTS) produced by another academic unit (not labelled as BIOL) or an external UOSM module. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the BSc Biology degree course, (for details see departmental web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options. The pathways within the degree programmes are merely advisory. They are to help students and tutors to plan sensible combinations of modules

MSci Biology

Part 1 (FHEQ Level 4)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

Students will take seven **compulsory** modules (BIOL1001, BIOL1003, BIOL1004, BIOL1005, BIOL1010*, BIOL1012* and BIOL1020).

In addition one optional module must be chosen. Students without a pass in ‘A-level Chemistry will be enrolled on CHEM1012 as an additional ninth module but may decide whether to take the module or not. If the exam is taken, the outcome will be included on your degree transcript. If you choose not to take the exam this will not prevent you from progressing, but it may limit your choice of module options in subsequent years.

*If you decide at the start of semester 1 to choose either BIOL1022 or BIOL1013 as your elective module then you will have the option to take BIOL1007 and/or BIOL1011 (which include laboratory practicals) in the first semester instead of the corresponding BIOL1010 and/or BIOL1012 (which have ‘dry’ computer practicals) subject to available space on the modules.

Part 2 (FHEQ Level 5)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

Students must take three **compulsory** modules (BIOL2008, BIOL2001 and BIOL2007)
An additional five elective modules (see tables on page 33-34, generally these are from within Biological Sciences and are described at the end in Section 1 of this handbook. Please note certain modules are prerequisites for specific year three modules. Students have the option of taking at most TWO elective modules (15 ECTS) produced by another academic unit (not labelled as BIOL). Not more than one UOSM, interdisciplinary elective module can be taken in Part 2. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the MSci Biology degree course, (for details see academic unit web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options.

Part 3 (FHEQ Level 6)

To enter part 3 of the MSci Biology degree, students must have achieved an average part mark of ≥60% at the end of Part 2

Students must take 60 ECTS in total during the year.

A total of 15ECTS-worth of project modules must be taken in the from the available options

Either BIOL3034 (15ECTS), BIOL3061 (15ECTS), BIOL3071 (15ECTS) or BIOL3069 (15ECTS)

A further six modules must be selected of which at least four must be BIOL modules which will usually be from those listed in the table on page 36-39. Please note certain modules have prerequisites of specific year two modules which should have been taken.

Students have the option of taking up to two elective modules (7.5 ECTS) offered by another academic unit (not labelled as BIOL) or an external UOSM module. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the MSci Biology degree course, (for details see departmental web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options. The pathways within the degree programmes are merely advisory. They are to help students and tutors to plan sensible combinations of modules

Part 4 (FHEQ Level 7)

In Part 4 you will undertake a compulsory research project (30ECTS) from the options below.

BIOL6013 or BIOL6069

The following modules are compulsory
BIOL6053 (7.5ECTS) and BIOL6073 (3.75ECTS) plus one further 3.75ECTS module that must be selected from a choice of BIOL6055, BIOL6075, BIOL6054, BIOL6077, BIOL6082 and BIOL6083.
Optional modules

TWO further elective modules must be selected from available BIOL modules or from modules available from outside Biological Science provided they are relevant to Biology (e.g. Environmental Sciences (ENVS), Oceanography (SOES), Psychology (PSYC)). The FHEQ Level 7 equivalent of an FHEQ Level 6 module already taken cannot be selected.
MSci Zoology

Part 1 (FHEQ Level 4)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

Students will take seven **compulsory** modules (BIOL1001, BIOL1003, BIOL1004, BIOL1005, BIOL1010*, BIOL1012* and BIOL1020).

In addition one optional module must be chosen. Students without a pass in ‘A'-level Chemistry will be enrolled on CHEM1012 as an additional ninth module but may decide whether to take the module or not. If the exam is taken, the outcome will be included on your degree transcript. If you choose not to take the exam this will not prevent you from progressing, but it may limit your choice of module options in subsequent years.

*If you decide at the start of semester 1 to choose either BIOL1022 or BIOL1013 as your elective module then you will have the option to take BIOL1007 and/or BIOL1011 (which include laboratory practicals) in the first semester instead of the corresponding BIOL1010 and/or BIOL1012 (which have ‘dry’ computer practicals) subject to available space on the modules.

Part 2 (FHEQ Level 5)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

Students must take five **compulsory** modules (BIOL2008, BIOL2039, SOES2011, BIOL2001 and BIOL2003)

An additional three elective modules (see tables on page 34-36 generally these are from within Biological Sciences and are described at the end in Section 1 of this handbook. Please note certain modules are prerequisites for specific year three modules. Students have the option of taking at most TWO elective modules (15 ECTS) produced by another academic unit (not labelled as BIOL). Not more than one UOSM, interdisciplinary elective module can be taken in Part 2. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the MSci Zoology degree course, (for details see academic unit web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options.

Part 3 (FHEQ Level 6)

To enter part 3 of the MSci Zoology degree, students must have achieved an average part mark of ≥60% at the end of Part 2

Students must take 60 ECTS in total during the year.

A total of 15ECTS-worth of project modules must be taken in the from the available options
Either BIOL3034 (15ECTS), BIOL3061 (15ECTS), BIOL3071 (15ECTS) or BIOL3069 (15ECTS)

A further six modules must be selected of which at least four must be BIOL modules which will usually be from those listed in the table on page 36-39. At least 6 ‘Z’ designated Zoology options must be taken during the year. Please note certain modules have prerequisites of specific year two modules which should have been taken.

Students have the option of taking up to two elective modules (7.5 ECTS) produced by another academic unit (not labelled as BIOL) or an external UOSM module. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the BSc Biology degree course, (for details see departmental web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options. The pathways within the degree programmes are merely advisory. They are to help students and tutors to plan sensible combinations of modules.

Part 4 (FHEQ Level 7)

In Part 4 you will undertake a compulsory research project (30ECTS) from the options below.

BIOL6013 or BIOL6069

The following modules are compulsory
BIOL6053 (7.5ECTS) and BIOL6073 (3.75ECTS) plus one further 3.75ECTS module that must be selected from a choice of BIOL6055, BIOL6075, BIOL6054, BIOL6077, BIOL6082 and BIOL6083.

Optional modules

TWO further elective modules must be selected from available BIOL modules or from modules available from outside Biological Science provided they are relevant to Biology (e.g. Environmental Sciences (ENVS), Oceanography (SOES), Psychology (PSYC)). The FHEQ Level 7 equivalent of an FHEQ Level 6 module already taken cannot be selected.

MSci Ecology & Conservation
Part 1 (FHEQ Level 4)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

Students will take seven compulsory modules (BIOL1001, BIOL1003, BIOL1004, BIOL1005, BIOL1010*, BIOL1012* and BIOL1020).
In addition one optional module must be chosen. Students without a pass in ‘A-level Chemistry will be enrolled on CHEM1012 as an additional ninth module but may decide whether to take the module or not. If the exam is taken, the outcome will be included on your degree transcript. If you choose not to take the exam this will not prevent you from progressing, but it may limit your choice of module options in subsequent years.

*If you decide at the start of semester 1 to choose either BIOL1022 or BIOL1013 as your elective module then you will have the option to take BIOL1007 and/or BIOL1011 (which include laboratory practicals) in the first semester instead of the corresponding BIOL1010 and/or BIOL1012 (which have ‘dry’ computer practicals) subject to available space on the modules.

Part 2 (FHEQ Level 5)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

Students must take five compulsory modules (BIOL2001, BIOL2004, BIOL2008, BIOL2041 and BIOL2047)

An additional four elective modules must be chosen (see tables on page 34-36 generally these are from within Biological Sciences and are described at the end in Section 1 of this handbook. Please note certain modules are prerequisites for specific year three modules. Students have the option of taking at most TWO elective modules (15 ECTS) produced by another academic unit (not labelled as BIOL). Not more than one UOSM, interdisciplinary elective module can be taken in Part 2. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the MSci Ecology & Conservation degree course, (for details see academic unit web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options.

Part 3 (FHEQ Level 6)

To enter part 3 of the MSci Ecology & Conservation degree, students must have achieved an average part mark of $\geq 60\%$ at the end of Part 2

Students must take 60 ECTS in total during the year.

A total of 15ECTS-worth of project modules must be taken in the from the available options

Either BIOL3034 (15ECTS), BIOL3061 (15ECTS), BIOL3071 (15ECTS) or BIOL3069 (15ECTS)

A minimum of four modules must be chosen from the following selection

BIOL3009, BIOL3053, BIOL3010, BIOL3056, BIOL3067, BIOL3068, BIOL3070 and BIOL3072
Additional modules must be selected to make up the total requirement of 60ECTS during the year. Please note certain modules have prerequisites of specific year two modules which should have been taken.

Students have the option of taking up to two elective modules (7.5 ECTS) produced by another academic unit (not labelled as BIOL) or an external UOSM module. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the MSci Ecology & Conservation degree course, (for details see departmental web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options. The pathways within the degree programmes are merely advisory. They are to help students and tutors to plan sensible combinations of modules.

Part 4 (FHEQ Level 7)

In Part 4 you will undertake a compulsory research project (30ECTS) from the options below.

BIOL6013 or BIOL6069

The following modules are compulsory
BIOL6053 (7.5ECTS) and BIOL6052 (7.5ECTS).

A further two skills-based modules must be chosen from the following choice
BIOL6054 (3.75ECTS), BIOL6055 (3.75ECTS), BIOL6073 (3.75ECTS) and BIOL6075 (3.75ECTS); BIOL6081 (3.75ECTS) and BIOL6082 (3.75ECTS).

Optional modules

One elective SOES or ENVS module should be selected from the list below.
SOES6008, SOES6020, SOES6021, SOES6051, SOES6062, SOES6068, ENS6003, ENVS6006, ENVS6023, ENVS6024.
The FHEQ Level 7 equivalent of an FHEQ Level 6 module already taken cannot be selected.
<table>
<thead>
<tr>
<th>Module code</th>
<th>Module name</th>
<th>Biology (BSc. and MSci.)</th>
<th>Zoology (BSc. and MSci.)</th>
<th>Ecology & Conservation (BSc. and MSci)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL2002</td>
<td>Cell Biology</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>BIOL2004</td>
<td>Pure & Applied Population Ecology</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>BIOL2008</td>
<td>Quantitative Methods in Biological & Environmental Science</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>BIOL2010</td>
<td>Flow of Genetic Information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2012</td>
<td>Exploring Proteins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2014</td>
<td>Neuroscience</td>
<td>*</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>BIOL2039</td>
<td>Animal Behaviour</td>
<td>*</td>
<td>**</td>
<td>C</td>
</tr>
<tr>
<td>BIOL2043</td>
<td>Biotechnology & the Living Cell</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>SOES2011</td>
<td>Marine Vertebrates</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

C = Compulsory module
R = Recommended module

** Part 2 modules

Semester 1

<table>
<thead>
<tr>
<th>Module code</th>
<th>Module name</th>
<th>Biology (BSc. and MSci.)</th>
<th>Zoology (BSc. and MSci.)</th>
<th>Ecology & Conservation (BSc. and MSci)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL2002</td>
<td>Cell Biology</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>BIOL2004</td>
<td>Pure & Applied Population Ecology</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>BIOL2008</td>
<td>Quantitative Methods in Biological & Environmental Science</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>BIOL2010</td>
<td>Flow of Genetic Information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2012</td>
<td>Exploring Proteins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2014</td>
<td>Neuroscience</td>
<td>*</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>BIOL2039</td>
<td>Animal Behaviour</td>
<td>*</td>
<td>**</td>
<td>C</td>
</tr>
<tr>
<td>BIOL2043</td>
<td>Biotechnology & the Living Cell</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>SOES2011</td>
<td>Marine Vertebrates</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Module code</th>
<th>Module name</th>
<th>Biology (BSc. and MSci.)</th>
<th>Zoology (BSc. and MSci.)</th>
<th>Ecology & Conservation (BSc. and MSci)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL2002</td>
<td>Cell Biology</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>BIOL2004</td>
<td>Pure & Applied Population Ecology</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>BIOL2008</td>
<td>Quantitative Methods in Biological & Environmental Science</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>BIOL2010</td>
<td>Flow of Genetic Information</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2012</td>
<td>Exploring Proteins</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2014</td>
<td>Neuroscience</td>
<td>*</td>
<td>**</td>
<td>*</td>
</tr>
<tr>
<td>BIOL2039</td>
<td>Animal Behaviour</td>
<td>*</td>
<td>**</td>
<td>C</td>
</tr>
<tr>
<td>BIOL2043</td>
<td>Biotechnology & the Living Cell</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>BIOL2045</td>
<td>Vertebrate Development</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2047</td>
<td>Animal Conservation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2057</td>
<td>Plant Development & Function</td>
<td>C</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>BIOL2011</td>
<td>Molecular & Cellular Biochemistry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2013</td>
<td>Bioinformatics & DNA Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Code</td>
<td>Module Name</td>
<td>Biology (BSc. and MSci.)</td>
<td>Zoology (BSc. and MSci.)</td>
<td>Ecology & Conservation (BSc. and MSci.)</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>BIOL2018</td>
<td>Adaptive Physiology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2022</td>
<td>Immunology, Infection & Inflammation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2038</td>
<td>Microbiology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2040</td>
<td>Neural Basis of Behaviour</td>
<td>(C)**</td>
<td>(C)**</td>
<td>(C)</td>
</tr>
<tr>
<td>BIOL2041</td>
<td>New Forest Field Course</td>
<td>**</td>
<td>**</td>
<td>C</td>
</tr>
<tr>
<td>BIOL2044</td>
<td>Medical Microbiology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOES2006</td>
<td>Phytoplankton and Primary Production</td>
<td>*</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SOES2017</td>
<td>Ecological Processes in the Marine</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Benthos</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOES2032</td>
<td>Palaeobiology</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Part 3 – project modules

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ONE 15ECTS project from</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3034†</td>
<td></td>
<td></td>
<td></td>
<td>Z</td>
<td>Z</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3061†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3071†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3069†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3058</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3059</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Or

TWO 7.5ECTS project modules (one in each semester) from

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3062 (semester 1); BIOL3060* (semester 1), BIOL3031** (semester 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3073 (semester 2), BIOL3066* (semester 2), and BIOL3032** (semester2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- † Students on the MSci Biology, MSci Zoology or MEcology & Conservation degree programmes must take BIOL3034, BIOL3061, BIOL3069 or BIOL3071 as their project option.
- * BIOL3060 is an essential prerequisite in order to take BIOL3066. ** It is not permitted to take both BIOL3031 and BIOL3032
- (C) Must take at least one of the modules
<table>
<thead>
<tr>
<th>Module code</th>
<th>Module name</th>
<th>Biology (BSc. and MSci.)</th>
<th>Zoology (BSc. and MSci.)</th>
<th>Ecology & Conservation (BSc. and MSci.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3001</td>
<td>Current Topics in Cell Biology</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3003</td>
<td>Plant Cell Biology</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3009</td>
<td>Applied Ecology</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3014</td>
<td>Molecular Cell Biology</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3015</td>
<td>Regulation of Gene Expression</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3021</td>
<td>Cellular and Molecular Neuroscience</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3027</td>
<td>Selective Toxicity</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3053</td>
<td>Community Ecology & Conservation</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3063</td>
<td>Bioinformatics & Systems Biology</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3025</td>
<td>Neuropharmacology of CNS Disorders</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3064</td>
<td>Cancer & Chromosome Biology</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3067</td>
<td>Evolution and Development</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>SOES3013</td>
<td>Zooplankton Ecology & Processes</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3006</td>
<td>Cellular & Genetic Aspects of Animal Development</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3010</td>
<td>Topics in Ecology & Evolution</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3013</td>
<td>Molecular Recognition</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3017</td>
<td>The Molecular and Structural Basis of Disease</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3018</td>
<td>Molecular Pharmacology</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3020</td>
<td>Systems Neuroscience</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>BIOL3022</td>
<td>Cell Signalling in Health and Disease</td>
<td>*</td>
<td>*</td>
<td>Z</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------------------</td>
<td>-------------------------------------</td>
<td>--------------------------------</td>
<td>---------------------------------</td>
</tr>
</tbody>
</table>

Part 4 – project modules

<table>
<thead>
<tr>
<th></th>
<th>Degree</th>
<th>MSci Biology</th>
<th>MSci Zoology</th>
<th>MSci Ecology & Conservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ONE 30ECTS project from</td>
<td></td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>BIOL6013 Advanced Laboratory Research Project</td>
<td></td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>BIOL6069 Advanced Field Research Project</td>
<td></td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

Part 4 modules

Semester 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL6053</td>
<td>Current Research</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>BIOL6073</td>
<td>Critical Thinking</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>BIOL6055</td>
<td>Computational Methods for Biological Data Analysis</td>
<td>C*</td>
<td>C*</td>
<td>C*</td>
<td>C*</td>
<td>C*</td>
<td>C*</td>
<td>C*</td>
</tr>
<tr>
<td>BIOL6075</td>
<td>Biological Optical Imaging</td>
<td>C*</td>
<td>C*</td>
<td>C*</td>
<td>C*</td>
<td>C*</td>
<td>C*</td>
<td>C*</td>
</tr>
<tr>
<td>BIOL6082</td>
<td>Skills in Biomolecular NMR</td>
<td>C*</td>
<td>C*</td>
<td>C*</td>
<td>C*</td>
<td>C*</td>
<td>C*</td>
<td>C*</td>
</tr>
</tbody>
</table>

38
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>C*</th>
<th>C*</th>
<th>C*</th>
<th>C*</th>
<th>C*</th>
<th>C*</th>
<th>C*</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL6083</td>
<td>Skills in Optical Spectroscopy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6072</td>
<td>Science Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6052</td>
<td>Advanced Quantitative Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6066</td>
<td>Community Ecology & Conservation</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6021</td>
<td>Current Topics in Cell Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6044</td>
<td>Plant Cell Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6010</td>
<td>Applied Ecology</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6030</td>
<td>Molecular Cell Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6027</td>
<td>Regulation of Gene Expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6035</td>
<td>Cellular and Molecular Neuroscience</td>
<td>Z</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6024</td>
<td>Selective Toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6036</td>
<td>Neuropharmacology of CNS Disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6071</td>
<td>Cancer & Chromosome Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>C*</th>
<th>C*</th>
<th>C*</th>
<th>C*</th>
<th>C*</th>
<th>C*</th>
<th>C*</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL6054</td>
<td>Techniques and Theory of Field Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6077</td>
<td>Skills in Molecular Bioscience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6025</td>
<td>Cellular & Genetic Aspects of Animal Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6029</td>
<td>Topics in Ecology & Evolution</td>
<td>Z</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6032</td>
<td>Molecular Recognition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6033</td>
<td>The Molecular and Structural Basis of Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6022</td>
<td>Molecular Pharmacology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6034</td>
<td>Systems Neuroscience</td>
<td>Z</td>
<td>Z</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6023</td>
<td>Cell Signalling in Health and Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6045</td>
<td>Neurodegenerative Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6046</td>
<td>Applied Plant Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6028</td>
<td>Global Change Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6047</td>
<td>Biofilms and Microbial Communities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C - compulsory module
C* - one of the modules should be chosen from the available choice
Overlapping Modules: In selecting modules for years 3 and 4 you must note that you may not take
overlapping modules at both level 3 and level 4 (FHEQ levels 6&7 respectively).

<table>
<thead>
<tr>
<th>Level 6 overlaps Level 7</th>
<th>Level 6 overlaps Level 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3001</td>
<td>BIOL6021</td>
</tr>
<tr>
<td>BIOL3026</td>
<td>BIOL6037</td>
</tr>
<tr>
<td>BIOL3018</td>
<td>BIOL6022</td>
</tr>
<tr>
<td>BIOL3022</td>
<td>BIOL6023</td>
</tr>
<tr>
<td>BIOL3010</td>
<td>BIOL6029</td>
</tr>
<tr>
<td>BIOL3017</td>
<td>BIOL6033</td>
</tr>
<tr>
<td>BIOL3021</td>
<td>BIOL6035</td>
</tr>
<tr>
<td>BIOL3025</td>
<td>BIOL6036</td>
</tr>
<tr>
<td>BIOL3026</td>
<td>BIOL6037</td>
</tr>
<tr>
<td>BIOL3043</td>
<td>BIOL6039</td>
</tr>
<tr>
<td>BIOL3052</td>
<td>BIOL6041</td>
</tr>
<tr>
<td>BIOL3055</td>
<td>BIOL6043</td>
</tr>
<tr>
<td>BIOL3051</td>
<td>BIOL6046</td>
</tr>
<tr>
<td>BIOL3053</td>
<td>BIOL6066</td>
</tr>
</tbody>
</table>

BSc Biology, Ecology & Conservation or Zoology with a 'Minor' subject

The structure of your degree programme allows you to exercise choice in each year of study. You can exercise this choice in a number of ways.

You can use these modules to deepen your knowledge of your main subject.

You can combine additional modules from your main subject with modules from the other disciplines or choose from a selection of interdisciplinary modules.
You can choose modules that build into a minor pathway, the title of which will be mentioned in your degree transcript.

Details of the minors available and the modules that are included can be found at http://www.southampton.ac.uk/cip/information_for_students/minor_subjects/index.page?
Biomedical Sciences, Biochemistry, Pharmacology

BSc Biomedical Sciences

Part 1 (FHEQ Level 4)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

Students will take four core modules (BIOL1007, BIOL1008, BIOL1011 and BIOL1013), 30 ECTS and three compulsory modules (BIOL1006, BIOL1020, and CHEM1039) 30 ECTS.

Students have a choice of either BIOL1023 (which is compulsory for those lacking A level chemistry) and BIOL1021

Part 2 (FHEQ Level 5)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

The module BIOL2046 is compulsory. Further you must take at least one of BIOL2010/2016 and one of BIOL2014/2022.

In addition a further three optional modules must be taken (see tables on page 51 - 53), generally these are from within Biological Sciences and are described later in this handbook.

Please note certain modules are prerequisites for specific year three modules. Students have the option of taking at most TWO elective modules (15 ECTS) produced by another academic unit (not labelled as BIOL). Not more than one UOSM, interdisciplinary elective module can be taken in Part 2. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the BSc Biomedical Sciences degree course, (for details see academic unit web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options.

Part 3 (FHEQ Level 6)

Students must take 60 ECTS.

(a) Students will take either

One of BIOL3034 or BIOL3058 or BIOL3059 (15ECTS) or BIOL3069 (15 ECTS)

Or

Two of (each 7.5 ECTS) BIOL3031, BIOL3032, BIOL3060, BIOL3066, BIOL3073 (note that BIOL3031 and BIOL3032 cannot both be taken, and BIOL3066 must be preceded by BIOL3060)
(b) Students must take a further six modules, these will usually be from those listed in the table on page 54. Please note certain modules have prerequisites of specific year two modules which should have been taken.

Students have the option of taking a single elective module (7.5 ECTS) produced by another academic unit (not labelled as BIOL) or an external UOSM module. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the BSc Biomedical Sciences degree course, (for details see departmental web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options. The pathways within the degree programmes are merely advisory. They are to help students and tutors to plan sensible combinations of modules.

BSc Biochemistry

Part 1 (FHEQ Level 4)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

Students will take four **core** modules (BIOL1007, BIOL1008, BIOL1011 and BIOL1013), 30 ECTS and four **compulsory** modules (BIOL1006, BIOL1020, BIOL1021 and CHEM1039), 30 ECTS. Instead of CHEM1039/BIOL1021, students wishing to study advanced chemistry (following discussion with their tutor), can take EITHER CHEM1041 and CHEM1042 (Fundamentals of Organic Chemistry I and II) AND CHEM1043 and CHEM1044 (Fundamentals of Physical Chemistry I and II) OR CHEM1041 and CHEM1042 AND CHEM1045 and CHEM1046 (Fundamentals of Inorganic Chemistry I and II)

Part 2 (FHEQ Level 5)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

The two modules BIOL2010 and BIOL2011 are core. The three modules BIOL2012, BIOL2013 and BIOL2046 are compulsory.

In addition a further three optional modules must be taken (see tables on page 51 - 53), generally these are from within Biological Sciences and are described later in this handbook. Please note certain modules are prerequisites for specific year three modules. Students have the option of taking at most TWO elective modules (15 ECTS) produced by another academic unit (not labelled as BIOL). Not more than one UOSM, interdisciplinary elective module can be taken in Part 2. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the BSc Biochemistry degree course, (for details see academic unit web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options.

Part 3 (FHEQ Level 6)

Students must take 60 ECTS.
(a) Students will take either one of

BIOL3034 (15 ECTS) or BIOL3058 (15 ECTS) or BIOL3059 (15 ECTS) or BIOL3069 (15 ECTS)

or

two of (each 7.5 ECTS) BIOL3031, BIOL3032, BIOL3060, BIOL3066, BIOL3073 (note that BIOL3031 and BIOL3032 cannot both be taken, and BIOL3066 must be preceded by BIOL3060)

(b) Students must take three compulsory modules (22.5 ECTS)

BIOL3013, BIOL3014 and BIOL3017

c) A minimum of one module must be taken from BIOL3015, BIOL3018, BIOL3021, BIOL3022, BIOL3027, BIOL3052, BIOL3063 and BIOL3064. In addition a further two modules must be taken; this will generally be from those listed in the table on page 53 (Please note certain modules have prerequisites of specific year two modules which should have been taken). Students have the option of taking a single elective module (7.5 ECTS) produced by another academic unit (not labelled as BIOL) or an external UOSM module. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the BSc Biochemistry degree course (for details see academic unit web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options.

BSc Pharmacology

Part 1 (FHEQ Level 4)

Students must take 60 ECTS, (eight 7.5 ECTS modules). Students will take four core modules (BIOL1007, BIOL1008, BIOL1011 and BIOL1013), 30 ECTS and four compulsory modules (BIOL1006, BIOL1020, BIOL1021 and CHEM1039) 30 ECTS. Instead of CHEM1039/BIOL1021, students wishing to study advanced chemistry (following discussion with their tutor), can take EITHER CHEM1041 and CHEM1042 (Fundamentals of Organic Chemistry I and II) AND CHEM1043 and CHEM1044 (Fundamentals of Physical Chemistry I and II) OR CHEM1041 and CHEM1042 AND CHEM1045 and CHEM1046 (Fundamentals of Inorganic Chemistry I and II)

Part 2 (FHEQ Level 5)

Students must take 60 ECTS, (eight 7.5 ECTS modules).

The two modules BIOL2016 and BIOL2017 are core. The five modules BIOL2010, BIOL2011, BIOL2014, BIOL2022 and Biol2046, are compulsory. In addition one further optional module must be taken, (see table on page 53), generally these are from within Biological Sciences and are described later in this handbook. Please note certain modules are prerequisites for specific year three modules. Students have the option of taking at most TWO elective modules (15 ECTS) produced by another academic unit (not labelled as BIOL). Not more than one UOSM, interdisciplinary elective module can be taken in the second year. Please note that elective modules maybe subject to timetabling and other
regulations limiting their availability as part of the BSc Pharmacology degree course, (for details see academic unit web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options.

Part 3 (FHEQ Level 6)

Students must take 60 ECTS.

(a) Students will take either one of

BIOL3034 (15 ECTS) or BIOL3058 (15 ECTS) or BIOL3059 (15 ECTS) or BIOL3069 (15 ECTS)

or

two of (each 7.5 ECTS) BIOL3031, BIOL3032, BIOL3060, BIOL3066, BIOL3073 (note that BIOL3031 and BIOL3032 cannot both be taken, and BIOL3066 must be preceded by BIOL3060)

(b) Students must take three compulsory modules (22.5 ECTS)

BIOL3018, BIOL3025 and BIOL3027

(c) A minimum of two modules will be taken from BIOL3014, BIOL3015, BIOL3017, BIOL3021, BIOL3022, BIOL3048 and BIOL3052. In addition a further module must be taken; this will generally be from those listed in the table on page 54. (Please note certain modules have prerequisites of specific year two modules which should have been taken.) Students have the option of taking a single elective module (7.5 ECTS) produced by another academic unit (not labelled as BIOL) or an external UOSM module. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the BSc Pharmacology degree course (for details see academic unit web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options.

Master of Biomedical Sciences (MBiomed Sci)

Part 1 (FHEQ Level 4)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

Students will take four core modules (BIOL1007, BIOL1008, BIOL1011 and BIOL1013), 30 ECTS and three compulsory modules (BIOL1006, BIOL1020, and CHEM1039) 30 ECTS. Students have a choice of either BIOL1023 (which is compulsory for those lacking A level chemistry) and BIOL1021
Part 2 (FHEQ Level 5)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

The module BIOL 2046 is compulsory. Further you must take at least one of BIOL2010/2016 and one of BIOL2011/2022.

In addition a further five optional modules must be taken, a minimum of three must be as list below (see tables on page 53), generally these are from within Biological Sciences and are described at the end in Section 1 of this handbook. Please note certain modules are prerequisites for specific year three modules. Students have the option of taking at most TWO elective modules (15 ECTS) produced by another academic unit (not labelled as BIOL). Not more than one UOSM, interdisciplinary elective module can be taken in Part 2. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the BSc Biomedical Sciences degree course, (for details see academic unit web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options.

Part 3 (FHEQ Level 6)

To enter part 3 of the MBiomed Sci degree, students must have achieved an average part mark of >60% at the end of Part 2

Students must take 60 ECTS.

(a) Students will take either

BIOL3034 (15ECTS),

Or

BIOL3069 (15 ECTS)

(b) Students must take a further six modules, these will usually be from those listed in the table on page 54, Please note certain modules have prerequisites of specific year two modules which should have been taken.

Students have the option of taking a single elective module (7.5 ECTS) produced by another academic unit (not labelled as BIOL) or an external UOSM module. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the Master of Biomedical Sciences degree course, (for details see departmental web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options. The pathways within the degree programmes are merely advisory. They are to help students and tutors to plan sensible combinations of modules.
Part 4 (FHEQ Level 7)

You will take the following two compulsory modules at FHEQ level 7 (45 ECTS)

BIOL6013 Individual laboratory-based investigation (30 ECTS)
BIOL6053 Current Research (7.5 ECTS)

Furthermore, you will undertake 7.5 ECTS in either another project (BIOL6011 Advanced Literature Project or BIOL6072 Advanced Science Communication) or in two skills modules (3.75 ECTS each) chosen from BIOL6055 Computational Methods, BIOL6073 Critical Thinking in Biological Research, BIOL6075 Advanced Optical Imaging, BIOL6073, BIOL6077 Skills in Molecular Bioscience, BIOL6082 Skills in Biomolecular NMR, or BIOL6083 Skills in Optical Spectroscopy.

In addition you will take two additional BIOL level four modules (FHEQ level 7; 15 ECTS) from a range of BIOL level 4 modules (FHEQ level 7).

BIOL6032 Molecular Recognition
BIOL6030 Molecular Cell Biology
BIOL6039 Cellular and Molecular Pathology
BIOL6027 Regulation of Gene Expression
BIOL6033 The Molecular and Structural Basis of Disease
BIOL6022 Molecular Pharmacology
BIOL6036 Neuropharmacology of CNS Disorders
BIOL6024 Selective Toxicity
BIOL6041 Biomedical technology
BIOL6071 Cancer Chromosome Biology
BIOL6034 Systems Neuroscience
BIOL6035 Cellular and Molecular Neuroscience
BIOL6023 Cell Signalling in Health and Disease
BIOL6037 Pathophysiology of the Lung
BIOL6038 Immunology
BIOL6040 Maternal, Fetal and Neonatal Physiology
BIOL6045 Neurodegenerative Disease
BIOL6042 Nutrition in Health & Disease: Part 1
BIOL6043 Nutrition in Health & Disease: Part 2
BIOL6074 Bioinformatics and Systems Biology*
BIOL6025 Cellular & Genetic Aspects of Animal Development
BIOL6076 Biomedical Parasitology
BIOL6080 Synaptic Function in Health and Disease
BIOL6079 Glial Development and Biology
NATS6008 Biomedical Spectroscopy and Imaging

*Please note BIOL6055 cannot be taken by students studying BIOL6074 or who have taken BIOL3063 in Year 3.

Overlapping Modules: In selecting modules for years 3 and 4 you must note that you may not take overlapping modules at both level 3 and level 4 (FHEQ levels 6&7 respectively).

<table>
<thead>
<tr>
<th>Level 6 overlaps Level 7</th>
<th>Level 6 overlaps Level 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3013</td>
<td>BIOL3015</td>
</tr>
<tr>
<td>BIOL6030</td>
<td>BIOL6032</td>
</tr>
<tr>
<td>BIOL3017</td>
<td>BIOL3018</td>
</tr>
<tr>
<td>BIOL6033</td>
<td>BIOL6022</td>
</tr>
<tr>
<td>BIOL3025</td>
<td>BIOL3027</td>
</tr>
<tr>
<td>BIOL6036</td>
<td>BIOL6024</td>
</tr>
<tr>
<td>BIOL3052</td>
<td>BIOL3020</td>
</tr>
<tr>
<td>BIOL6041</td>
<td>BIOL6034</td>
</tr>
<tr>
<td>BIOL3021</td>
<td>BIOL3022</td>
</tr>
<tr>
<td>BIOL6035</td>
<td>BIOL6023</td>
</tr>
<tr>
<td>BIOL3026</td>
<td>BIOL3037</td>
</tr>
<tr>
<td>BIOL6037</td>
<td>BIOL6038</td>
</tr>
<tr>
<td>BIOL3048</td>
<td>BIOL3044</td>
</tr>
<tr>
<td>BIOL6045</td>
<td>BIOL6040</td>
</tr>
<tr>
<td>BIOL3055</td>
<td>BIOL3054</td>
</tr>
<tr>
<td>BIOL6043</td>
<td>BIOL6042</td>
</tr>
<tr>
<td>BIOL3025</td>
<td>BIOL3065</td>
</tr>
<tr>
<td>BIOL6025</td>
<td>BIOL6076</td>
</tr>
<tr>
<td>BIOL3064</td>
<td>BIOL3063</td>
</tr>
<tr>
<td>BIOL6071</td>
<td>BIOL6074</td>
</tr>
<tr>
<td>BIOL3043</td>
<td>BIOL3060/66</td>
</tr>
<tr>
<td>BIOL6039</td>
<td>BIOL6072</td>
</tr>
</tbody>
</table>

The pathways within the degree programmes shown in the table on page 56 are merely advisory. They are to help students and tutors to plan sensible combinations of modules.
Master of Biochemistry (MBiochem)

Part 1 (FHEQ Level 4)
Students must take 60 ECTS, (eight 7.5 ECTS modules)

Students will take four core modules (BIOL1007, BIOL1008, BIOL1011 and BIOL1013), 30 ECTS and four compulsory modules (BIOL1006, BIOL1020, BIOL1021 and CHEM1039) 30 ECTS. Instead of CHEM1039/BIOL1021, students wishing to study advanced chemistry (following discussion with their tutor), can take EITHER CHEM1041 and CHEM1042 (Fundamentals of Organic Chemistry I and II) AND CHEM1043 and CHEM1044 (Fundamentals of Physical Chemistry I and II) OR CHEM1041 and CHEM1042 AND CHEM1045 and CHEM1046 (Fundamentals of Inorganic Chemistry I and II).

Part 2 (FHEQ Level 5)
Students must take 60 ECTS, (eight 7.5 ECTS modules)

The two modules BIOL2010 and BIOL2011 are core. The three modules BIOL2012, BIOL2013 and BIOL2046 are compulsory.

In addition a further three optional modules must be taken (see tables on page 51-53), generally these are from within Biological Sciences and are described at the end in Section 1 of this handbook. Please note certain modules are prerequisites for specific year three modules. Students have the option of taking at most TWO elective modules (15 ECTS) produced by another academic unit (not labelled as BIOL). Not more than one UOSM, interdisciplinary elective module can be taken in the second year. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the Master of Biochemistry degree course, (for details see academic unit web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options.

Part 3 (FHEQ Level 6)

To enter Part 3 of the MBiochem degree, students must have achieved an average part mark of >60% at the end of Part 2.

Students must take 60 ECTS.

(a) Students will take either BIOL3034 (15ECTS) or BIOL3069 (15 ECTS)

(b) Students must take three compulsory modules (22.5 ECTS)

BIOL3013, BIOL3014 and BIOL3017
(c) A minimum of one module must be taken from, BIOL3015, BIOL3018, BIOL3021, BIOL3022, BIOL3027, BIOL3052, BIOL3063 and BIOL3064. In addition a further two modules must be taken; this will generally be from those listed in the table on page 54. (Please note certain modules have prerequisites of specific year two modules which should have been taken.) Students have the option of taking a single elective module (7.5 ECTS) produced by another academic unit (not labelled as BIOL) or an external UOSM module. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the Master of Biochemistry degree course (for details see academic unit web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options.

Part 4 (FHEQ Level 7)

You will take the following two compulsory modules at FHEQ level 7 (45 ECTS)

BIOL6013 Advanced Research Project (30 ECTS)
BIOL6053 Current Research (7.5 ECTS)

Furthermore, you will undertake 7.5 ECTS in either another project (BIOL6011 Advanced Literature Project or BIOL6072 Advanced Science Communication) or in two skills modules (3.75 ECTS each) chosen from BIOL6055 Computational Methods*, BIOL6073 Critical Thinking, BIOL6075 Advanced Optical Imaging, BIOL6077 Skills in Molecular Bioscience, BIOL6082 Skills in Biomolecular NMR, BIOL6083 Skills in Optical Spectroscopy.

In addition you will take two additional BIOL level four modules (FHEQ level 7; 15 ECTS) from a range of BIOL level 4 modules (FHEQ level 7).

BIOL6032 Molecular Recognition
BIOL6030 Molecular Cell Biology
BIOL6039 Cellular and Molecular Pathology
BIOL6027 Regulation of Gene Expression
BIOL6033 The Molecular and Structural Basis of Disease
BIOL6022 Molecular Pharmacology
BIOL6036 Neuropharmacology of CNS Disorders
BIOL6024 Selective Toxicity
BIOL6041 Biomedical technology
BIOL6071 Cancer Chromosome Biology
BIOL6034 Systems Neuroscience
BIOL6035 Cellular and Molecular Neuroscience
BIOL6023 Cell Signalling in Health and Disease
BIOL6037 Pathophysiology of the Lung
BIOL6038 Immunology
BIOL6040 Maternal, Fetal and Neonatal Physiology
BIOL6045 Neurodegenerative Disease
BIOL6042 Nutrition in Health & Disease: Part 1
BIOL6043 Nutrition in Health & Disease: Part 2
BIOL6074 Bioinformatics and Systems Biology*
BIOL6025 Cellular & Genetic Aspects of Animal Development
BIOL6076 Biomedical Parasitology
NATS6008 Biomedical Spectroscopy and Imaging

*Please note BIOL6055 cannot be taken by students studying BIOL6074 or who have taken BIOL3063 in Year 3.

Overlapping Modules: In selecting modules for years 3 and 4 you must note that you may not take overlapping modules at both level 3 and level 4 (FHEQ levels 6&7 respectively).

<table>
<thead>
<tr>
<th>Level 6 overlaps Level 7</th>
<th>Level 6 overlaps Level 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3014 BIOL6030</td>
<td>BIOL3015 BIOL6027</td>
</tr>
<tr>
<td>BIOL3017 BIOL6033</td>
<td>BIOL3018 BIOL6022</td>
</tr>
<tr>
<td>BIOL3025 BIOL6036</td>
<td>BIOL3027 BIOL6024</td>
</tr>
<tr>
<td>BIOL3052 BIOL6041</td>
<td>BIOL3020 BIOL6034</td>
</tr>
<tr>
<td>BIOL3021 BIOL6035</td>
<td>BIOL3022 BIOL6023</td>
</tr>
<tr>
<td>BIOL3026 BIOL6037</td>
<td>BIOL3037 BIOL6038</td>
</tr>
<tr>
<td>BIOL3048 BIOL6045</td>
<td>BIOL3044 BIOL6040</td>
</tr>
<tr>
<td>BIOL3055 BIOL6043</td>
<td>BIOL3054 BIOL6042</td>
</tr>
<tr>
<td>BIOL3025 BIOL6036</td>
<td>BIOL3065 BIOL6076</td>
</tr>
<tr>
<td>BIOL3064 BIOL6071</td>
<td>BIOL3063 BIOL6074</td>
</tr>
<tr>
<td>BIOL3043 BIOL6039</td>
<td>BIOL3060/66 BIOL6072</td>
</tr>
<tr>
<td>BIOL3013 BIOL6032</td>
<td></td>
</tr>
</tbody>
</table>

The pathways within the degree programmes shown in the table on page 56-57 are merely advisory. They are to help students and tutors to plan sensible combinations of modules.
Master of Neuroscience (MNeuroscience)

Part 1 (FHEQ Level 4)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

Students will take four core modules (BIOL1007, BIOL1008, BIOL1011 and BIOL1013), 30 ECTS and four compulsory modules (BIOL1006, BIOL1020, BIOL1021 and CHEM1039) 30 ECTS

Part 2 (FHEQ Level 5)

Students must take 60 ECTS, (eight 7.5 ECTS modules)

There are three core modules BIOL2014, BIOL2022 and BIOL2046. The three modules BIOL2010, BIOL2016 & BIOL2011 are compulsory. Students must select one from BIOL2017 (highly recommended) or BIOL2040.

In addition a further optional module must be taken, (see tables on pages 52), generally these are from within Biological Sciences and are described at the end in Section 1 of this handbook. Please note certain modules are prerequisites for specific year three modules. Students have the option of taking at most TWO elective modules (15 ECTS) produced by another academic unit (not labelled as BIOL). Not more than one UOSM, interdisciplinary elective module can be taken in the second year. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the Master of Neuroscience degree course, (for details see academic unit web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options.

Part 3 (FHEQ Level 5)

To enter Part 3 of the Master of Neuroscience degree, students must have achieved an average part mark of >60% at the end of Part 2.

Students must take 60 ECTS.

(a) Students will take either

BIOL3034 (15ECTS),

Or

BIOL 3069 (15ECTS)
(b) Students must take two compulsory modules (15 ECTS)

BIOL3021, and BIOL3025

(c) Two modules will be taken from BIOL3018, BIOL3020, BIOL3048 and one from BIOL3022, and BIOL3017. In addition a further first semester module must be taken; this will generally be from those listed in the table on page 53. (Please note certain modules have prerequisites of specific year two modules which should have been taken.) Students have the option of taking a single elective module (7.5 ECTS) produced by another academic unit (not labelled as BIOL) or an external UOSM module. Please note that elective modules maybe subject to timetabling and other regulations limiting their availability as part of the Maser of Neuroscience degree course (for details see academic unit web sites). Students should discuss the choice of elective modules with their tutor before pursuing such options.

Part 4 (FHEQ Level 7)

Students must take 60 ECTS

You will take the following three compulsory modules at FHEQ level 7 (45 ECTS)

BIOL6067 Advanced Neuroscience (15 ECTS)
BIOL6013 Individual laboratory-based investigation (30 ECTS)
BIOL6078 Structure and Function of the Nervous System (7.5 ECTS)

In addition you will select an additional BIOL level four module worth 7.5ECTS from those listed below

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL6022</td>
<td>Molecular Pharmacology</td>
<td>7.5</td>
</tr>
<tr>
<td>BIOL6034</td>
<td>Systems Neuroscience</td>
<td>7.5</td>
</tr>
<tr>
<td>BIOL6045</td>
<td>Neurodegenerative Disease</td>
<td>7.5</td>
</tr>
<tr>
<td>BIOL6079</td>
<td>Glial Development and Biology</td>
<td></td>
</tr>
<tr>
<td>BIOL6080</td>
<td>Synaptic Function in Health and Disease</td>
<td></td>
</tr>
</tbody>
</table>

Overlapping Modules: In selecting modules for years 3 and 4 you must note that you may not take overlapping modules at both level 3 and level 4 (FHEQ levels 6&7 respectively).

<table>
<thead>
<tr>
<th>Level 6 overlaps Level 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3018</td>
</tr>
<tr>
<td>BIOL3020</td>
</tr>
<tr>
<td>BIOL3048</td>
</tr>
</tbody>
</table>
Pathway for BIOCHEMISTRY/BIOMEDICAL/PHARMACOLOGY/NEUROSCIENCE students

<table>
<thead>
<tr>
<th>Year 1- modules</th>
<th>Degree</th>
<th>Biochem. (BSc and Master)</th>
<th>Pharma. (BSc)</th>
<th>Biomedical Science (BSc and Master)</th>
<th>Neurosci. (Master)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL1007</td>
<td></td>
<td>C & P</td>
<td>C & P</td>
<td>C & P</td>
<td>C & P</td>
</tr>
<tr>
<td>BIOL1011</td>
<td></td>
<td>C & P</td>
<td>C & P</td>
<td>C & P</td>
<td>C & P</td>
</tr>
<tr>
<td>CHEM1039</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL1020</td>
<td></td>
<td>A</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>CHEM104X</td>
<td></td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL1008</td>
<td></td>
<td>C & P</td>
<td>C & P</td>
<td>C & P</td>
<td>C & P</td>
</tr>
<tr>
<td>BIOL1013</td>
<td></td>
<td>C & P</td>
<td>C & P</td>
<td>C & P</td>
<td>C & P</td>
</tr>
<tr>
<td>BIOL1021</td>
<td></td>
<td>A</td>
<td>A</td>
<td>D</td>
<td>C</td>
</tr>
<tr>
<td>BIOL1006</td>
<td></td>
<td>C</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM104X</td>
<td></td>
<td>A</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL1023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C = compulsory module
C&P = Core module (must be passed)

Note BIOL1020 is taken over semesters 1 and 2

A = Biochemistry and Pharmacology students may take advanced chemistry courses in place of CHEM1039 and BIOL1021.
These are EITHER CHEM1041 and CHEM1042 AND CHEM1043 and CHEM1044
OR CHEM1041 and CHEM1042 AND CHEM1045 and CHEM1046

B = Biomedical students must take one module labelled B, CHEM1012 is compulsory for biomedical students lacking A level chemistry

D = Biomedical students must take one module labelled D, BIOL1023 is compulsory for biomedical students lacking A level chemistry
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BSc and Master</td>
<td>BSc</td>
<td>BSc and Master</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2010</td>
<td>Flow of Genetic Information</td>
<td>C & P</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>BIOL2014</td>
<td>Neuroscience</td>
<td>*</td>
<td>C</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL2012</td>
<td>Exploring Proteins: Structure & Function</td>
<td>C</td>
<td>E</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL2016</td>
<td>Pharmacology A</td>
<td>*</td>
<td>C & P</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>BIOL2046</td>
<td>Quantitative Methods in Biomedical Sciences</td>
<td>C</td>
<td>E</td>
<td>C & P</td>
<td>C & P</td>
<td>C & P</td>
</tr>
<tr>
<td>BIOL2002</td>
<td>Cell Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2043</td>
<td>Biotechnology and the Living Cell</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester 2</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL2011</td>
<td>Molecular and Cellular Biochemistry</td>
<td>C & P</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>BIOL2017</td>
<td>Pharmacology B</td>
<td>*</td>
<td>C & P</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL2013</td>
<td>Bioinformatics & DNA Technology</td>
<td>C</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL2022</td>
<td>Immunology, Infection & Inflammation</td>
<td>*</td>
<td>C</td>
<td>B</td>
<td>B</td>
<td>B</td>
</tr>
<tr>
<td>BIOL2045</td>
<td>Vertebrate Development</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>BIOL2044</td>
<td>Medical Microbiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2040</td>
<td>Neural Basis of Behaviour</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2018</td>
<td>Adaptive Physiology</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2042</td>
<td>Biological Sciences Study Abroad</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note BIOL2046 is taken over semesters 1 and 2
BIOL2012 and BIOL2017 require BIOL1021
If you wish to take BIOL2042 you must contact the coordinator.
C= compulsory module
C&P=Core module (must be passed)
* suggested module choices for specified pathways

Biochemistry- must take and pass the two modules marked C&P (core) and take those marked C (compulsory). Additionally students must take a further three modules, normally selected from, but not restricted to, those marked (*).
Pharmacology- must take and pass the two modules marked C&P (core) and take the four marked C (compulsory). Students must take one of the modules marked E. Additionally students must take a further module, normally selected from, but not restricted to, those marked (*).

Biomedical Sciences- must take at least one from those marked A (BIOL2010 or BIOL2016) and one from those marked B (BIOL2011 or BIOL2022). Additionally students must take a further six modules, normally selected from those marked (*). A maximum of two elective modules can be selected from suitable courses run by academic units other than Biological Sciences however only a single UoSM module may be taken (if considering taking such an external module please discuss this option with your tutor).

MNeurosci- must take and pass the two modules marked C&P (core) and take the three marked C (compulsory). One of the modules marked D must be taken, BIOL2017 is highly recommended. Additionally students must take a further module in semester two. (If considering taking a module external to Biological Sciences please discuss this option with your tutor)
Year 3 - taught modules

<table>
<thead>
<tr>
<th>Semester</th>
<th>Degree</th>
<th>Biochem. BSc and Master</th>
<th>Pharma. BSc</th>
<th>Biomedical Science BSc and Master</th>
<th>Neurosci. Master</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bioch.</td>
<td>Physio</td>
<td>Pharm.</td>
<td>Path</td>
</tr>
<tr>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3014</td>
<td>Molecular Cell Biology</td>
<td>C</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3027</td>
<td>Selective Toxicity</td>
<td>X</td>
<td>C</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3021</td>
<td>Cellular & Molecular Neuroscience</td>
<td>X</td>
<td>Y</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3015</td>
<td>Regulation of Gene Expression</td>
<td>X</td>
<td>Y</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3043</td>
<td>Cellular and Molecular Pathology</td>
<td>X</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3003</td>
<td>Current Topics in Cell Biology</td>
<td>X</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3036</td>
<td>Pathophysiology of the Lung</td>
<td>X</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3054</td>
<td>Nutrition in Health & Disease: Part 1</td>
<td>X</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3037</td>
<td>Immunology</td>
<td>X</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3063</td>
<td>Biomechanics & Systems Biology</td>
<td>X</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3064</td>
<td>Cancer and Chromosome Biology</td>
<td>X</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3025</td>
<td>Neuropharmacology of CNS Disorders</td>
<td>C</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3045</td>
<td>Cellular & Molecular Pathology</td>
<td>X</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3017</td>
<td>The Molecular & Structural Basis of Disease</td>
<td>C</td>
<td>Y</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3018</td>
<td>Molecular Pharmacology</td>
<td>X</td>
<td>C</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3013</td>
<td>Molecular Recognition</td>
<td>C</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3022</td>
<td>Cell Signaling in Health & Disease</td>
<td>X</td>
<td>Y</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3052</td>
<td>Biomedical Technology</td>
<td>X</td>
<td>Y</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3048</td>
<td>Neurodegenerative Disease</td>
<td>Y</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3044</td>
<td>Developmental Origins of Health and Disease</td>
<td>Y</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3020</td>
<td>Systems Neuroscience</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3006</td>
<td>Cellular & Genetic Aspects of Animal Development</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3055</td>
<td>Nutrition in Health & Disease: Part 2</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3018</td>
<td>Biofilms & Microbial Communities</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>BIOL3065</td>
<td>Biomedical Parasitology</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* suggested modules suitable for specified pathways
C= compulsory module for given degree

Year 3 - project modules

- **Biochemical Pathway**: Three modules (C) must be taken. Of the three additional modules at least two must be from those marked X the third being a BIOL module or elective module.

- **Pharmacology**: Three modules (C) must be taken. Of the three additional modules at least two must be from those marked Y the third being a BIOL module or elective module.

- **MNeurosci**: Two modules (C) must be taken, two modules must be taken from those marked A and one from those marked B. The additional module taken in semester 1 should be a BIOL module.

Students must also take a further 6 modules:

Biomedical Sciences: A maximum of two elective modules can be selected from suitable courses run by academic units other than Biological Sciences however only a single UoSM module may be taken (if considering taking such an external module please discuss this option with your tutor)

Pharmacology: Three modules (C) must be taken. Of the three additional modules at least two must be from those marked X the third being a BIOL module or elective module.

In all three programs a single suitable elective module run by an academic unit other than a BIOL or a UoSM module can be selected. (If considering taking an external module please discuss this option with your tutor)

MSc Physio: Two modules (C) must be taken, two modules must be taken from those marked X and one from those marked Y. The additional module taken in semester 1 should be a BIOL module.

Over semester 1 and 2 students must take 15 ECTS from these modules. Students can do only one per semester - MBiochem, MBiomed Sci and MNeurosci students must take BIOL3034 or BIOL3069.
A further three modules will be taken from a range of BIO level 4 (NQF7), with 7.5ECTS taken from those marked Y or Z - NB those in italic text are half modules and if taken 2 must be c
MNeurosci-The module BIO6078(C) is compulsory- A further module from those marked A must be taken, those marked with an asterix are highly recommended
You may not take overlapping modules at both level 3 and 4 (NQF levels 6 and 7) for a list of overlapping modules see earlier
DESCRIPTION OF MODULES

The information given about modules has been made as accurate as possible at the time of going to press but the University reserves the right to modify or alter without prior notice any of the modules advertised; it may not be possible to offer all modules or components of a module as described in this booklet in each academic session. In the event of a module being discontinued, arrangements exist to enable students to substitute to an alternative module.

The University is transferring from CATS (Credit Accumulation and Transfer Scheme) to ECTS (European Credit Transfer and Accumulation System). CATS can be converted to ECTS by dividing the CATS value by 2, e.g. a 15 CATS module is 7.5 ECTS. This CATS to ECTS transfer does not affect your degree in anyway.

Full details of all the modules outlined below can be viewed via the Biological Sciences website

FIRST YEAR MODULES (FHEQ Level 4)

BIOL1001 EXPERIMENTAL AND FIELD BIOLOGY Semester 2
ECTS: 7.5 Coordinator: Dr J Lock & Dr N Gostling (Easter vacation)
CATS: 15 Prerequisites: None

This module is restricted to students on the Biology, Zoology and Ecology & Conservation programmes for whom it is compulsory. BIOL 1001 is made up of a ~8 day residential field course normally in Andalucía, southern Spain. The field course provides an opportunity for students to get first-hand experience of sampling, handling, identifying and studying organisms in the field.

As this is a Compulsory module, the travel, equipment and accommodation are covered by Biological Sciences.

BIOL1003 ECOLOGY AND EVOLUTION Semester 2
ECTS: 7.5 Coordinator: Dr J Lock
CATS: 15 Prerequisites: A-level Biology

The aim of this module is to introduce the student to the main branches of ecology by considering the various levels at which the subject may be studied: individuals, populations, communities and ecosystems.

BIOL1004 PATTERNS OF LIFE Semester 1
ECTS: 7.5 Coordinator: Dr N Gostling
CATS: 15 Prerequisites: A-level Biology or Botany or Zoology

The aim of the module is to provide an introduction to the evolution and diversity of living organisms.

BIOL1005 CELL BIOLOGY & GENETICS Semester 2
ECTS: 7.5 Coordinator: Dr A Marchant
CATS: 15 Prerequisites: A-level Biology or Botany or Zoology preferred

This module is only available for students enrolled on Biology and Zoology degree programmes and students outside of Biological Sciences - see BIOL1006 as alternative

The aim of this module is to provide an introduction to Cell Biology and Genetics from general principles to modern day applications; you should aim to understand, appreciate, be familiar with, and realise the significance of the module contents.
BIOL1006
CELL BIOLOGY & GENETICS
ECTS: 7.5
Coordinator: Dr Alan Marchant
Prerequisites: A-level Biology or Botany or Zoology preferred

This module is ONLY available for students enrolled on Biochemistry, Biomedical Sciences and Pharmacology degree programmes - see BIOL1005 as alternative.

The aim of this module is to provide an introduction to Cell Biology and Genetics from general principles to modern day applications; you should aim to understand, appreciate, be familiar with, and realise the significance of the module contents.

BIOL1007
MACROMOLECULES OF LIFE
ECTS: 7.5
Coordinator: Dr ML Bellamy
Prerequisites: A or A/S level Chemistry or Physical Science; alternatively CHEM1012 must be taken.

This module is ONLY available for students enrolled on Biochemistry, Biomedical Sciences and Pharmacology degree programmes - see BIOL1010 as alternative.

The aim of this module is to describe the types of macromolecule that constitute living cells, with a particular emphasis on DNA and proteins. As an entry level module it is designed to bring forward participants to a common point where all will share the appropriate biological knowledge, terminology and understanding of these fundamental molecules.

BIOL1008
METABOLISM & METABOLIC DISORDERS
ECTS: 7.5
Coordinator: Dr ML Bellamy
Prerequisites: BIOL1007

The aims of the module are to provide you with an understanding of: (1) the basic metabolic pathways; (2) inborn errors of metabolism and the application of DNA technology to their study; (3) the control and integration of metabolism. This unit completes the first year course in Biochemistry, following on from the first semester module on the Macromolecules of Life (BIOL 1007).

BIOL1010
MACROMOLECULES OF LIFE
ECTS: 7.5
Coordinator: Dr ML Bellamy
Prerequisites: A or A/S level Chemistry or Physical Science; alternatively CHEM1012 must be taken.

This module is only available for students enrolled on Biology, Ecology & Conservation and Zoology degree programmes and students outside of Biological Sciences - see BIOL1007 as alternative.

The aim of this module is to describe the types of macromolecule that constitute living cells, with a particular emphasis on DNA and proteins. As an entry level module it is designed to bring forward participants to a common point where all will share the appropriate biological knowledge, terminology and understanding of these fundamental molecules.

BIOL1011
SYSTEMS PHYSIOLOGY
ECTS: 7.5
Coordinator: Dr C Clarkin
Prerequisites: None

This module is ONLY available for students enrolled on Biochemistry, Biomedical Sciences and Pharmacology degree programmes - see BIOL1012 as alternative. The aim of the module is to introduce students to basic principles and concepts of physiology and how these principles operate in mammalian systems.
BIOL1012 **SYSTEMS PHYSIOLOGY** Semester 1
ECTS: 7.5 Coordinator: Dr C Clarkin
CATS: 15 Prerequisites: None

This module is only available for students enrolled on Biology, Ecology & Conservation and Zoology degree programmes and students outside the Biological Sciences - see BIOL1011 as alternative.
The aim of the module is to introduce students to basic principles and concepts of physiology and how these principles operate in mammalian systems.

BIOL1013 **INTEGRATIVE MAMMALIAN PHYSIOLOGY** Semester 2
ECTS: 7.5 Coordinator: Dr C Bell & Dr N Smyth
CATS: 15 Prerequisites: None.

This module is ONLY available for students enrolled on Biological Sciences degree programmes - see BIOL1014 as alternative.
The aim of this module is to introduce the principles and the mechanisms involved in mammalian endocrinology, reproduction, and immunity as well as cell-cell communication in animal systems. The lecture programme is supported by a series of four practicals.

BIOL1014 **INTEGRATIVE MAMMALIAN PHYSIOLOGY** Semester 2
ECTS: 7.5 Coordinator: Dr C Bell & Dr N Smyth
CATS: 15 Prerequisites: BIOL1011 or BIOL1012.

This module is only available for students from outside the Biological Sciences - see BIOL1013 as alternative.
The aim of this module is to introduce the principles and some of the mechanisms involved in mammalian endocrinology, reproduction, and immunity as well as cell-cell communication in animal systems.

BIOL1020 **CORE SKILLS IN THE LIFE SCIENCES** Semester 1 & 2
ECTS: 7.5 Coordinator: Dr ML Bellamy
CATS: 15 Prerequisites: None

The aim of this module is to generate an awareness of how biological research is carried out and how it culminates in the ultimate goal of research - a published scientific paper. As well as covering laboratory and computer techniques that are commonly used to generate experimental data, the module also includes hands-on experience of the analysis, visualisation and interpretation of data – skills that will be required for final year projects.

BIOL1021 **BEHAVIOUR OF BIOMOLECULES** Semester 2
ECTS: 7.5 Coordinator: Dr D Doyle
CATS: 15 Prerequisites: A-level chemistry

This module builds on the content of CHEM1039 to provide the student with a comprehensive understanding of the chemistry that underpins biochemical sciences and some of the techniques that are employed to study it. The module provides a solid foundation in the reaction mechanisms that are found in biological systems, the thermodynamic properties of gases and liquids, the role of metal ions in biology and an introduction to spectroscopy.

BIOL1022 **METABOLISM & METABOLIC DISORDERS** Semester 2
ECTS: 7.5 Coordinator: Dr ML Bellamy
CATS: 15 Prerequisites: BIOL1007 or BIOL1010

This module provides you with an understanding of: (1) the basic metabolic pathways; (2) inborn errors of metabolism and the application of DNA technology to their study; (3) the control and integration of metabolism. This module completes the first year teaching in biochemistry, following on from the first semester module on the Macromolecules of life (BIOL 1010/1007), looking at the much smaller metabolite molecules.

BIOL1023 **CELL & TISSUE HISTOLOGY** Semester 2
ECTS: 7.5 Coordinator: Dr NR Smyth & Dr MR Andrews
This module will give an understanding of the various principles and applications of cell and tissue imaging, providing familiarity with the appearance and functional aspects of a number of different types of cells, tissues, organs and systems. This will involve examining tissue and cell structures at cellular and subcellular levels. It will introduce students to the ultrastructural features of tissues and cells. It will also introduce the microscopic changes which underlie the major forms of pathology.

SECOND YEAR MODULES (FHEQ Level 5)

BIOL2001 **EVOLUTION** Semester 2
ECTS: 7.5 Coordinator: Dr M Chapman
CATS: 15 Prerequisites: BIOL1003 or BIOL1004

The aim of the module is to explore the main evolutionary processes, both at a phenotypic and molecular level, and the resulting evolutionary patterns, at different time scales.

BIOL2002 **CELL BIOLOGY** Semester 1
ECTS: 7.5 Coordinator: Professor MJ Terry
CATS: 15 Prerequisites: Normally BIOL1007 or BIOL1010, and BIOL1005 or BIOL1006

The aims of this module are to promote an appreciation of the complexity of animal, plant and microbial cells. Develop an understanding of selected key cellular structures and processes. Develop an appreciation of some of the techniques used in cell biology research and provide a basis for further study of cell biology and related topics in later modules.

BIOL2004 **PURE AND APPLIED POPULATION ECOLOGY** Semester 1
ECTS: 7.5 Coordinator: Professor CP Doncaster
CATS: 15 Prerequisites: BIOL1003

The aim of this module is to build on the basic principles of population ecology introduced in BIOL1003, to achieve a broad appreciation of current theory and practice.

BIOL2007 **PLANT DEVELOPMENT AND FUNCTION** Semester 2
ECTS: 7.5 Coordinator: Dr LE Williams
CATS: 15 Prerequisites: None

Plants and humans share a common ancestor, which lived three billion years ago. Although plants can survive easily without us, green plants are essential to our survival and well-being. They are also the primary producers of the terrestrial ecosystem—all of the food that animals eat comes directly or indirectly from plants. They are primary converters of solar into chemical energy. They have a major influence on the global cycling of oxygen, carbon dioxide and nitrogen. Furthermore, we rely on plants for food, fibre, fuel and a whole array of chemical compounds. Therefore, an appreciation of plant development and function is central to your biological education and the study of plant biology has never been more important or more exciting. The understanding and manipulation of plant growth and development is an important and expanding science and molecular and genetic tools are enabling plant scientists to understand plants with ever-increasing levels of sophistication. In this course we demonstrate that plants are complex and responsive organisms and that the link between genetics, development, growth and function enables the plant to survive in an ever-changing environment.

BIOL2008 **QUANTITATIVE METHODS IN BIOLOGICAL AND ENVIRONMENTAL SCIENCE** Semester 1
ECTS: 7.5 Coordinator: Professor CP Doncaster
CATS: 15 Prerequisites: BIOL1001 preferred

The aim of this module is to develop analytical skills required for the final year Project, scientific investigation in general, and your future career. The module will develop skills in computer literacy and graphical presentation, understanding of scientific method and hypothesis testing, a few simple mathematical concepts,
and basic methods of statistical analysis, including non-parametric tests, analysis of variance and data modelling.

Biol2010
Flow of Genetic Information
ECTS: 7.5
Coordinator: Dr D Doyle, Dr J Cleal, Dr M Coldwell
CATS: 15
Prerequisites: BIOL1007 and BIOL1005/1006; BIOL1008 and BIOL1010 preferred

The module focuses on nucleic acid and protein biogenesis with particular emphasis on the flow of genetic information from DNA to RNA to proteins and key regulatory steps. Material relating to both prokaryotic and eukaryotic organisms will be covered.

Biol2011
Molecular & Cellular Biochemistry
ECTS: 7.5
Course Coordinator: Dr ML Bellamy and Dr P Skipp
CATS: 15
Prerequisites: BIOL1007/1008; BIOL2010

The aim of this module is to develop the basic concepts of protein structure and function within the overall context of cell function. A major theme in the module is that of cell signalling and the role of membrane proteins in signalling events.

Biol2012
Exploring Proteins: Structure and Function
ECTS: 7.5
Coordinator: Dr JM Werner
CATS: 15
Prerequisites: BIOL1007 and CHEM1039 or CHEM1041 or CHEM1042 or CHEM1043 or CHEM1044 or CHEM1045

Proteins are at the heart of almost every biological process. They fulfill an astounding array of diverse functions. Antibodies are masters in recognising other molecules and enzymes speed up reactions by many orders of magnitude; these are two of the examples of proteins that you will encounter in this module. Without understanding proteins modern biology would be inconceivable. This module aims to provide an understanding of the biology, structure and function of proteins.

Biol2013
Bioinformatics & DNA Technology
ECTS: 7.5
Coordinator: Dr J Gibson
CATS: 15
Prerequisites: BIOL1007 or BIOL1010
This module is highly recommended for BIOL3015 (Genes and Gene Expression)

The aim of this module is to provide an understanding of key genetic processes at the molecular level, and their exploitation for gene manipulation.

Biol2014
Neuroscience
ECTS: 7.5
Coordinators: Dr J Dillon & Dr K Deinhardt
CATS: 15
Prerequisites: (BIOL1011 or BIOL1012) and (BIOL1013 or BIOL1014) and (BIOL1008 or BIOL1022) and (CHEM1039 or CHEM1012 or A-level Chemistry). If you do not have all the prerequisites, it may still be possible to take the module depending on availability of space; in this case contact the module coordinator.

This aim of this module is to convey the concept of neuroscience as an integrative discipline by providing insight into mammalian brain functions, from molecular and cellular aspects of synaptic signalling to higher cognitive function that regulates behaviour.

Biol2016
Pharmacology A
ECTS: 7.5
Coordinators: Professor V O’Connor and Dr J Wang
CATS: 15
Prerequisites: Any BIOL1007 - BIOL1014 module. CHEM1039 or CHEM1041 or CHEM1042 or CHEM1043 or CHEM1044 or CHEM1045

The aim of this module is to introduce pharmacology with particular emphasis on basic mechanisms of drug action.
BIOL2017 PHARMACOLOGY B Semester 2
ECTS: 7.5 Coordinator: Professor KR Fox
CATS: 15 Prerequisites: Any BIOL1007 – BIOL1014 module. CHEM1039 or CHEM1041 or CHEM1042 or CHEM1043 or CHEM1044 or CHEM1045

The aim of this module is to provide second year students with an introduction to general pharmacology. It builds on the general principles taught in the first semester module Pharmacology A (BIOL 2016).

BIOL2018 ADAPTIVE PHYSIOLOGY Semester 2
ECTS: 7.5 Coordinator: Dr H Wijnen
CATS: 15 Prerequisites: Any BIOL1007 – BIOL1014 module (other first year modules may be accepted by agreement with the Coordinator). CHEM1039, CHEM1012 or A-level Chemistry preferred

This module provides insight in various aspects of adaptive animal physiology including the regulation of immunity, circulation, reproduction, osmotic state, respiration, body temperature, and developmental transitions. The way that these systems have evolved adaptive differences across the animal kingdom is a topic of particular interest. A second major focus is concerned with the regulatory principles that allow individual animals to adjust their physiological systems to cope with changes in their environment.

BIOL2022 IMMUNOLOGY, INFECTION AND INFLAMMATION Semester 2
ECTS: 7.5 Coordinator: Dr J Teeling
CATS: 15 Prerequisites: BIOL1011 and BIOL1013

The aim of this module is to give second year students an introduction to basic immune mechanisms and to illustrate those principles using examples from different diseases.

BIOL2038 ENVIRONMENTAL MICROBIOLOGY Semester 2
ECTS: 7.5 Coordinator: Professor JS Webb
CATS: 15 Prerequisites: BIOL1007/1010

This module aims to provide a comprehensive introduction to microbiology, including fundamental aspects of microbial diversity and physiology, and with a focus on selected themes that are essential features of environmental microbiology and microbial ecology. The module will be designed to include up-to-date understanding of modern research in these fields and the link between laboratory-based discovery science and contemporary applied microbiology. The structure of the laboratory sessions will provide training in the practical skills necessary for microbiology in academic research or in the workplace.

Students cannot take BIOL2038 as well as BIOL2044

BIOL2039 ANIMAL BEHAVIOUR Semester 1
ECTS: 7.5 Coordinators: Dr J Lock and Dr AR Kraaijeveld
CATS: 15 Prerequisites: A-level Biology or Zoology; BIOL2008 strongly preferred

The aims of the module are to provide an introduction to the study of animal behaviour, taking an integrative approach that addresses animal behaviour from ethological, ecological and evolutionary angles, and to review the basic concepts of behaviour as a science.

BIOL2040 NEURAL BASIS OF BEHAVIOUR Semester 2
ECTS: 7.5 Coordinator: Dr H Wijnen
CATS: 15 Prerequisites: A-level Biology or Zoology; BIOL2008 strongly preferred. CHEM1039, CHEM1012 or A-level Chemistry preferred

The aim of this module is to elucidate some of the principles by which the nervous system generates and controls the behaviour of animals.
BIOL2041 **NEW FOREST FIELD COURSE** Semester 2
ECTS: 7.5 Coordinators: Dr B Robroek & Dr J Lock
CATS: 15 Prerequisites: BIOL1001, BIOL1003 and BIOL1004

This module will provide you with valuable ecological surveying and species identification techniques within the context of conservation priorities for a local and unique national park, the New Forest, through a series of day trips in order to complete a research project. You will be able to build on the taxonomic skills gained in BIOL1001. You will focus on UK wildlife and identify to species level, a valuable employability skill, particularly if you are interested in pursuing a career in ecological consultancy.

BIOL2042 **BIOLOGICAL SCIENCES STUDY ABROAD** Semester 2
ECTS: 30 Coordinator: Dr HV Siddle
CATS: 60 Prerequisites: overall average module mark of >60%

The module is studied abroad in the second semester of part two. The marks for the courses taken at the overseas institution will be used to produce a single overall module mark for 30ECTS. Marks will be translated according to the university policy. Details on which universities are available to students on the different degree programmes are obtainable from the coordinator. Choice of overseas courses is to be decided in consultation with the module coordinator and programme leads to ensure that all learning outcomes and prerequisite requirements are met when the student returns to study at UoS.

BIOL2043 **BIOTECHNOLOGY AND THE LIVING CELL** Semester 2
ECTS: 7.5 Coordinator: Dr A Marchant
CATS: 15 Prerequisites: BIOL1011 and BIOL1013

This module will enable students to gain an understanding about the development and application of cell biotechnology in the modern world. Topics to be covered will span the range of cell biotechnology in microbiological, plant and animal systems.

BIOL2044 **MEDICAL MICROBIOLOGY** Semester 2
ECTS: 7.5 Coordinator: Professor JS Webb
CATS: 15 Prerequisites: BIOL1007/1010

This module aims to provide a comprehensive introduction to microbiology, including fundamental aspects of microbial diversity and physiology, and with a focus on selected themes that are essential features of medical microbiology. The module will be designed to include up-to-date understanding of modern research in these fields and the link between laboratory-based discovery science and contemporary medical microbiology. The structure of the laboratory sessions will provide training in the practical skills necessary for microbiology in academic research or in the workplace.

Students cannot take BIOL2038 as well as BIOL2044

BIOL2045 **VERTEBRATE DEVELOPMENT** Semester 2
ECTS: 7.5 Coordinators: Dr Salah Elias, Dr Neil Smyth, Dr Neil Gostling
CATS: 15 Prerequisites: BIOL1005 or BIOL1011 preferred. CHEM1039, CHEM1012 or A-level Chemistry preferred

The aim of this module is to develop the basic concepts of human and other vertebrate animal development. Students will come to understand the main mechanisms behind both animal development and organised cellular differentiation and how these processes are studied. They will also become aware of how various changes in developmental pathways can play a role in human and animal health.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester(s)</th>
<th>ECTS</th>
<th>Coordinator(s)</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL2046</td>
<td>QUANTITATIVE METHODS IN BIOMEDICAL SCIENCES</td>
<td>Semesters 1 & 2</td>
<td>7.5</td>
<td>Dr N Smyth</td>
<td>BIOL1020 preferred</td>
</tr>
<tr>
<td></td>
<td>The aim of this module is to develop analytical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>skills required for the final year Project,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>scientific investigation in general, and your</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>future career. The module will develop skills in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>computer literacy and graphical presentation,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>understanding of scientific method and hypothesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>testing, a few simple mathematical concepts, and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>basic methods of statistical analysis, including</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>non-parametric tests, analysis of variance and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>data modelling.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2045</td>
<td>ANIMAL CONSERVATION</td>
<td>Semester 2</td>
<td>7.5</td>
<td>Dr K Peh</td>
<td></td>
</tr>
<tr>
<td></td>
<td>We are now losing our biodiversity on a massive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>scale worldwide — a current extinction crisis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fuelled by human-induced threats. There is an</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>urgent need to educate our next generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>conservation scientists and practitioners so</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>that they are well-equipped to preserve our</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>wildlife, and in a better position to protect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>our natural resources. This module provides</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>cutting-edge conservation science to undergraduates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>with the principle aim of disseminating the latest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>conservation knowledge.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
THIRD YEAR MODULES (FHEQ Level 6)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Semester</th>
<th>ECTS</th>
<th>Coordinator</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3001</td>
<td>CURRENT TOPICS IN CELL BIOLOGY</td>
<td>Semester 1</td>
<td>7.5</td>
<td>Dr M Przewloka</td>
<td>BIOL2002 or BIOL2010 preferred</td>
</tr>
<tr>
<td></td>
<td>The aim of this module is to provide a detailed and up-to-date study of a small number of topics in modern cell biology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3003</td>
<td>PLANT CELL BIOLOGY</td>
<td>Semester 1</td>
<td>7.5</td>
<td>Dr LE Williams</td>
<td>BIOL2007 preferred but not essential</td>
</tr>
<tr>
<td></td>
<td>This module explores current topics in plant cell biology. It provides an understanding of the unique features of plant cells and of the cellular mechanisms that allow plants to interact with their environment. Responses at the cellular level to important environmental problems encountered worldwide are discussed and the mechanisms plants use to adapt and survive are covered. The application of modern techniques in cell biology is included and so this module is also of value to those with a broad interest in cell biology. The topics include ones in which members of the course team are actively engaged in research and therefore the most up-to-date information is provided. Areas covered include: the diversity of plastid function; chloroplast function and assembly; the vacuole as a multifunctional compartment; membrane transport; calcium and phytochrome signalling; stress responses covering salt, ozone, and heavy metals.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3006</td>
<td>CELLULAR AND GENETIC ASPECTS OF ANIMAL DEVELOPMENT</td>
<td>Semester 2</td>
<td>7.5</td>
<td>Dr Claire Clarkin</td>
<td>BIOL2002, BIOL2045</td>
</tr>
<tr>
<td></td>
<td>The aim of this module is to understand the cellular and genetic mechanisms of animal development and how they are studied.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3009</td>
<td>APPLIED ECOLOGY</td>
<td>Semester 1</td>
<td>7.5</td>
<td>Dr K Peh</td>
<td>BIOL2004 preferred</td>
</tr>
<tr>
<td></td>
<td>The aim of this module is to extend the knowledge of ecology and population biology taught in first, second and third year modules to cover the application of these disciplines to solving ecological problems, such as managing pests or genetically modified organisms and the problems associated with climate change. To provide a coherent summary of the main methods used to manage pest populations. To examine the ecological impacts of climate change and its mitigation. To provide examples of the applications of theoretical ecology to topical ecological issues. To provide a summary of factors influencing how the land is managed, especially in terms of food production.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3010</td>
<td>TOPICS IN ECOLOGY AND EVOLUTION</td>
<td>Semester 2</td>
<td>7.5</td>
<td>Dr AR Kraaijeveld</td>
<td>BIOL2001 (must be passed), BIOL2004</td>
</tr>
<tr>
<td></td>
<td>The aims of this module are to extend the knowledge of ecological and evolutionary processes taught in first and second year modules provide an in-depth account of the research areas of interest of Biological Sciences staff working in ecology and evolution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Code</td>
<td>Module Title</td>
<td>Semester</td>
<td>ECTS</td>
<td>Coordinator</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>----------</td>
<td>------</td>
<td>-------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>BIOL3013</td>
<td>MOLECULAR RECOGNITION</td>
<td>2</td>
<td>7.5</td>
<td>Dr I Tews</td>
<td>BIOL2010/BIO2011 or BIOL2012</td>
</tr>
<tr>
<td></td>
<td>The aim of this module is to illustrate the nature of interactions between macromolecules important in biological systems.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3014</td>
<td>MOLECULAR CELL BIOLOGY</td>
<td>1</td>
<td>7.5</td>
<td>Dr I Tews</td>
<td>BIOL2010/BIO2011</td>
</tr>
<tr>
<td></td>
<td>The aim of this module is to provide an understanding of the ways in which proteins are targeted to their appropriate cellular locations within eukaryotic cells following synthesis; the mechanisms involved in targeting proteins presented from the external environment and the role played by tyrosine kinase receptor cascades and oncogenes in normal and aberrant cell signaling.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3015</td>
<td>REGULATION OF GENE EXPRESSION</td>
<td>1</td>
<td>7.5</td>
<td>Professor KA Lillycrop</td>
<td>BIOL1005/ BIOL2010</td>
</tr>
<tr>
<td></td>
<td>The aim of this module is to provide an understanding of i) gene regulation in eukaryotic organisms, ii) how the deregulation of gene expression leads to human genetic disorders such as cancer, iii) the molecular basis of inherited disease.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3017</td>
<td>THE MOLECULAR AND STRUCTURAL BASIS OF DISEASE</td>
<td>2</td>
<td>7.5</td>
<td>Dr PTF Williamson</td>
<td>BIOL2010/BIO2011</td>
</tr>
<tr>
<td></td>
<td>This module is designed for the biomedical scientists and biochemists to explore the molecular aspects of human disease. The module will provide an understanding of how molecular studies can be applied to biomedical research in a range of areas including the study of: therapeutic protein production, virology, microbiology, amyloid disease and protein kinases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3018</td>
<td>MOLECULAR PHARMACOLOGY</td>
<td>2</td>
<td>7.5</td>
<td>Dr D Rusling</td>
<td>BIOL2016 or BIOL2017</td>
</tr>
<tr>
<td></td>
<td>The aim of this module is to provide third year students with an introduction to the molecular basis of receptor pharmacology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3020</td>
<td>SYSTEMS NEUROSCIENCE</td>
<td>2</td>
<td>7.5</td>
<td>Professor JE Chad</td>
<td>BIOL2014 (BIOL3021 is encouraged)</td>
</tr>
<tr>
<td></td>
<td>To expose students to research level studies into the function/dysfunction of the central nervous system. The course will describe neural cell populations and CNS development, followed by the mechanisms of learning & memory and analyses of neural circuits controlling behaviour.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3021</td>
<td>CELLULAR AND MOLECULAR NEUROSCIENCE</td>
<td>1</td>
<td>7.5</td>
<td>Professor JE Chad/Professor V O'Connor</td>
<td>BIOL2014</td>
</tr>
<tr>
<td></td>
<td>The aim of this module is to provide an understanding of the function of, and interactions between, membrane signalling proteins that produce the overt electrophysiological behaviour of neurones.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BIOL3022 CELL SIGNALLING IN HEALTH AND DISEASE Semester 2
ECTS 7.5 Coordinator: Dr N Divecha
CATS: 15 Prerequisites: BIOL2014, BIOL2010 and BIOL2011

The aim of this module is to give students a thorough background in the signalling mechanisms by which mammalian cells are regulated.

BIOL3025 NEUROPHARMACOLOGY OF CNS DISORDERS Semester 1
ECTS: 7.5 Coordinator: Professor LM Holden-Dye
CATS: 15 Prerequisite: BIOL2016 or BIOL2017

The aim of this module is to describe basic concepts in neuropharmacology e.g. on the localisation and putative function of neurotransmitter pathways in the brain and to use this knowledge to consider different theories relating to the biochemical basis of action of psychotomimetic and psychotropic drugs. This is covered in the context of major psychiatric conditions including schizophrenia, depression and drug addiction.

BIOL3027 SELECTIVE TOXICITY Semester 1
ECTS: 7.5 Coordinator: Dr D Rustling
CATS: 15 Prerequisites: BIOL2017 (preferably BIOL2016 as well)

The aim of this module is to provide third year students with an introduction to the principles of selective toxicity, in which chemotherapeutic agents are used to inhibit the growth of an invading species by selective targeting pathways or processes in the pathogen.

BIOL3031 LITERATURE-BASED RESEARCH PROJECT Semester 1
ECTS: 7.5 Coordinator: Dr ML Bellamy
CATS: 15 Co-requisites: BIOL3061 or BIOL3060

The aim of this module is to provide an opportunity for study in depth of a topic chosen by the student after consultation with the coordinators and an appropriate supervisor.

BIOL3032 LITERATURE-BASED RESEARCH PROJECT Semester 2
ECTS: 7.5 Coordinator: Dr ML Bellamy
CATS: 15 Co-requisites: BIOL3061 or BIOL3060

The aim of this module is to provide an opportunity for study in depth of a topic chosen by the student after consultation with the coordinators and an appropriate supervisor.

BIOL3034 LABORATORY RESEARCH PROJECT Semesters 1 & 2
ECTS: 7.5 Coordinators: Dr M Bellamy & Dr J Dillon
CATS: 15 Prerequisite for Biol/Ecol/Zool students: BIOL2008 (must be passed)

The aim of this module is to allow students to carry out an extensive laboratory-based, or data-based project on a special topic related to his/her main area of study, and to complete a literature survey on a topic related to this area of research.

BIOL3048 NEURODEGENERATIVE DISEASES Semester 2
ECTS: 7.5 Coordinator: Dr A Mudher
CATS: 15

The aims of this module are to explore the various mechanisms that neurones employ to execute cell death processes in both normal and abnormal conditions, and to improve your understanding of the pathogenic mechanisms that cause cell death in several neurodegenerative diseases.

BIOL3051 APPLIED PLANT BIOLOGY Semester 2
ECTS: 7.5 Coordinator: Dr A Marchant
CATS: 15 Prerequisites: BIOL2007 (preferred but not essential)
The aim of the course is to provide a broad introduction to the applied use of plants in the modern world, highlighting the benefits of using cutting edge technologies in combatting some of the challenges faced by society.

BIOL3052 BIOMEDICAL TECHNOLOGY
ECTS: 7.5 Coordinator: Dr C Birts
CATS: 15

This module is designed to illustrate the ways in which the theoretical principles of biochemistry, cellular and molecular biology presented in previous modules can be applied to yield important commercial or therapeutic products or processes.

BIOL3053 BIODIVERSITY AND CONSERVATION
ECTS: 7.5 Coordinator: Dr RJ Morris
CATS: 15 Prerequisites: BIOL1003, BIOL2004 and BIOL2008

This module concerns global biodiversity, what we understand by it and why it is in crisis, and current efforts to conserve and manage it.

BIOL3056 GLOBAL CHANGE BIOLOGY
ECTS: 7.5 Coordinator: Dr J Godbold
CATS: 15 Prerequisites: BIOL2007 preferred but not essential

This module aims to provide an understanding of i) current global change caused by human activities, ii) ways in which biota respond and adapt to global change, and iii) approaches available for mitigating and managing impacts of global change.

BIOL 3057 BIOFILMS AND MICROBIAL COMMUNITIES
ECTS: 7.5 Coordinator: Professor JS Webb
CATS: 15 Prerequisites: BIOL2038 preferred, but not essential

This module aims to provide an understanding of bacterial biofilms and the environmental, industrial and health care problems related to complex microbial consortia of societal importance. Students will learn to describe and explain the basis for biofilm development in nature and in chronic infections, as well as to understand and interpret the outputs of modern techniques in microbial biofilm research.

BIOL 3063 BIOINFORMATICS & SYSTEMS BIOLOGY
ECTS: 7.5 Coordinator: Dr R Ewing & Dr J Gibson
CATS: 15 Prerequisites: BIOL2012 and BIOL2013 preferred, but not essential

The aims of this module are to introduce students to the latest genomic, transcriptomic and proteomic technologies; illustrate the applications and limitations of these approaches; and provide students with some practical bioinformatics skills to enable them to process, analyse, and interpret the resulting data.

BIOL 3064 CANCER & CHROMOSOME BIOLOGY
ECTS: 7.5 Coordinator: Dr D Tumbarello
CATS: 15 Prerequisites: BIOL1005 or BIOL1006 and BIOL1007

The aim of this module is to provide students with a research level understanding of various topics in cancer biology associated with carcinogenesis, tumour progression, and metastasis. This will require understanding the genetic drivers of cancer development and the mechanisms of progression both at the molecular and cellular level.

BIOL 3065 BIOMEDICAL PARASITOLOGY
ECTS: 7.5 Coordinator: Dr N Smyth
CATS: 15 Prerequisites: BIOL 2022 - for Biology / Zoology students: the Parasitology section of BIOL 2022 will be offered as freestanding lectures
The aim of this module is to introduce third year students to the main clinically relevant parasite classes, it will consider their lifecycles, the human/veterinary pathology caused and the treatment methods both of the primary and where applicable intermediate hosts and environment. It will give an understanding of vector borne disease. The module will consider the interaction and evasion methods used by parasites in respect to the immune system and chemical control. It will consider the evidence of possible benefits gained by parasitism. Finally it will demonstrate examples of host: parasite coevolution and consider the likely changes in parasite risk the UK in the light of environmental change.

BIOL3067 EVOLUTION AND DEVELOPMENT
ECTS: 7.5 Coordinator: Dr N Gostling Semester 1
CATS: 15 Prerequisites: Either BIOL1004 or 1003, BIOL2001

This module will deliver a comprehensive analysis of the topics associated with evolutionary developmental biology. This will involve exploring the theory of evolution; embryology and molecular pathways of development; what the fossil record tells us about development and the timings of emergence of species, body plans and morphological characters; how this can be used to produce trees elucidating evolutionary relationships. This module will link traditional 19th century topics of evolutionary theory and embryology with 21st century insights from phylogenetics, developmental and molecular biology and palaeontology.

BIOL3068 FLUXES, CYCLES AND MICROBIAL COMMUNITIES
ECTS: 7.5 Coordinator: Dr M Dumont Semester 2
CATS: 15 Prerequisite: BIOL2038 preferred but not essential

Microorganisms are key players in all the major biogeochemical cycles on Earth. Microbial Biogeochemistry explores the microbial influence on the biological, chemical, and geological processes that shape natural environments on our planet. This is currently an area of intense research activity given the extent to which humans have been modifying the natural world, which have potential consequences for ecosystems, the biosphere and Earth’s climate. Microorganisms have a critical role in these processes as major controllers of elemental fluxes, ecosystem functioning and as producers and consumers of major greenhouse gases. This module will introduce students to the diversity of microbial life that has been shaping our biosphere since the early beginnings of life, and that continues to shape our biosphere in the Anthropocene.

BIOL3070 TROPICAL ECOLOGY FIELD COURSE
ECTS: 7.5 Coordinator: Dr J Snaddon Semester 2
CATS: 15 Prerequisite: BIOL1001, BIOL1003, BIOL2008

This module will provide first-hand experience of ecological research in a tropical environment and give you a foundation in a range of topics including biodiversity, community ecology, ecosystem processes and conservation.

Tropical forests are some of the most diverse ecosystems on Earth and play critical roles in global biogeochemical cycles and climate regulation. However they are undergoing rapid transformation through deforestation and land-use change. Alongside developing research skills this module will provide an opportunity for students to develop an understanding of how these ecosystems function and an appreciation of conservation and management of tropical forests.

BIOL3072 BEHAVIOURAL ECOLOGY
ECTS: 7.5 Coordinator: Dr J Lock & Dr A R Kraaijeveld Semester 1
CATS: 15 Prerequisite: BIOL2039

Behavioural ecology considers the evolutionary pressures that shape behaviour. This module will explore animal behaviours from evolutionary biology and population ecological perspectives. Each week, lectures will consider a different behavioural ecology topic, to be discussed in more detail in accompanying weekly seminars. Throughout the module, students will keep an individual notebook/log/journal, sharing their notes and reflections with other students during seminars as part of group discussions to expand their personal learning network. Each student will write a research proposal for a behavioural ecology research project of...
their own devising, requiring them to consider the relevant background information, appropriate methodology
and to budget the costs of their proposed project.
BIOL3058 **BIOSCIENCE BUSINESS** Semester 1 and 2

ECTS: 15 Coordinator: Prof Jessica Teeling & Prof KT Jones
CATS: 30 Prerequisites: BIOL2016 and BIOL2017.
BIOL2014, 2022, 2010 and 2011 preferred also.

The aim of this module is to provide third year students with an introduction to commercialisation of biosciences.

BIOL3059 **BIOSCIENCE EDUCATION** Semester 1 and 2

ECTS: 15 Coordinator: Dr Amrit Mudher
CATS: 30 Prerequisites: none

The aim of this module is to provide students with an introduction to the process of conveying scientific knowledge to an audience: either to sixth form or secondary school children.

BIOL3060 **SCIENCE COMMUNICATION** Semester 1

ECTS: 7.5 Coordinator: Dr Declan Doyle
CATS: 15 Preferable: Core and/or compulsory year 2 modules, relevant to either Biomedical Sciences/ Biochemistry/Pharmacology, or Biology/Zoology

Science Communication involves the dissemination of science to a lay audience. This is essential as an aid for governmental and industrial policy making. It is needed to counteract any misperceptions about science and is becoming an obligation for publically funded work. This module provides an introduction to the methods and resources a student will need in order to play an active role in communicating science.

BIOL3066 **EXTENDED SCIENCE COMMUNICATION** Semester 2

ECTS: 7.5 Coordinator: Dr D Doyle Prerequisite: BIOL3060

Science Communication involves the dissemination of science to a lay audience. Equally as important; a good scientist is a good communicator. Science Communication is essential as an aid for governmental and industrial policy making. It is needed to counteract any misperceptions about science and is becoming an obligation for publically funded work. It is an important tool for motivating our next generation of scientists. Hence, Science Communication can boost a student’s employability for a wide range of jobs. This module provides an introduction to the methods and resources a student will need in order to play an active role in communicating science.

BIOL3061 **FIELD RESEARCH PROJECT** Semesters 1 and 2

ECTS: 15 Coordinator: Dr AR Kraaijeveld
CATS: 30 Prerequisite for Biol/Ecol/Zool students: BIOL2008 (must be passed)

The aim of this module is to allow students to carry out an extensive field-based project on a special topic related to his/her main area of study, and to complete a literature survey on a topic related to this area of research.

BIOL3062 **SHORT FIELD RESEARCH PROJECT** Semester 1

ECTS: 7.5 Coordinator: Dr AR Kraaijeveld
CATS: 15 Prerequisite for Biol/Ecol/Zool students: BIOL2008 (must be passed)

The aim of this module is to allow students to carry out a field-based project on a special topic related to his/her main area of study, and to complete a literature survey on a topic related to this area of research.

BIOL3069 **IN-SILICO RESEARCH PROJECT** Semesters 1 and 2

ECTS: 15 Coordinator: Dr R Ewing/Dr J Gibson

The aim of this module is to provide students with an introduction to the process of conveying scientific knowledge to an audience: either to sixth form or secondary school children.
Each student undertakes an investigation which includes both practical and theoretical components. The theory component will consist of a critical review of the literature relating to the proposed experimental/analytical component of the project. The topic of the work is related to the appropriate degree programme. Each student is assigned to an appropriate supervisor who will advise on and direct the project and the preparation of a written report. The aim of this module is to allow students to carry out an extensive biological data-based project on a special topic related to his/her main area of study, and to complete a literature survey on a topic related to this area of research.

BIOL3071 **EXTERNAL RESEARCH PROJECT**
Semesters 1 and 2
ECTS: 15
Coordinator: Dr N Gostling
CATS: 30

The aim of this module is to allow students to carry out a research at a location other than the University of Southampton project on a special topic related to his/her main area of study, and to complete a literature survey on a topic related to this area of research.

BIOL3073 **BIOETHICS PROJECT**
Semester 2
ECTS: 7.5
Coordinators: Prof K Fox
CATS: 15

While scientific discovery may be ethically neutral, its application can raise profound ethical questions, in which there is often disagreement and misunderstanding in both the scientific community and the general public. It is therefore important to understand the basic science that lies behind the discoveries, to recognise the potential ethical dilemmas these produce, and to appreciate the reasons why people come to different ethical conclusions. This module provides opportunities to explore some bioethical issues and to develop skills in presenting these to both academic and lay audiences.

The following third year modules are run by Biological Sciences but taught by Faculty of Medicine staff and include students on the MMedSci degree programme.

BIOL3026 **PATHOPHYSIOLOGY OF THE LUNG**
Semester 1
ECTS: 7.5
Coordinator: Dr JA Warner (jawarner@soton.ac.uk)
CATS: 15
Prerequisites: BIOL2014, BIOL2010 and BIOL2011

The aim of this module is to give students a sound background in modern molecular medicine using examples from pulmonary health and disease.

BIOL3037 **IMMUNOLOGY**
Semester 1
ECTS: 7.5
Coordinator: Dr S Sahota (S.S.Sahota@soton.ac.uk)
CATS: 15

The aims of the module are to provide an understanding of core immunology and the immunological basis of some common diseases.

BIOL3043 **CELLULAR AND MOLECULAR PATHOLOGY**
Semester 1
ECTS: 7.5
Coordinator: Dr J Blaydes (jpb1@soton.ac.uk)
CATS: 15
Prerequisites: BIOL2002 or BIOL2003 or BIOL2014

The aims of this module are to study recent advances in selected areas of biomedical science and to gain insight into the use of basic science in understanding the cell and molecular biology of specific disease processes.

BIOL3044 **DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE**
Semester 2
ECTS: 7.5
Coordinator: Dr LR Green (L.R.Green@soton.ac.uk)
CATS: 15
Prerequisites: BIOL2003 and/or BIOL2018
The aim of this module is to provide an understanding of the major physiological mechanisms underlying the progression through embryonic, fetal and neonatal life and their implications for adult health.

BIOL3054 **NUTRITION IN HEALTH & DISEASE: PART 1** **Semester 1**
ECTS: 7.5 Coordinator: Professor PC Calder (pcc@soton.ac.uk)
CATS: 15 Prerequisites: Any BIOL2010 – 2013 module

The aim of this module is to examine the causative, protective or therapeutic roles of nutrition with regard to human disease.

BIOL3055 **NUTRITION IN HEALTH & DISEASE: PART 2** **Semester 2**
ECTS: 7.5 Coordinator: Dr GC Burdge (g.c.burdge@soton.ac.uk)
CATS: 15 Prerequisites: Any BIOL2010 – BIOL2013 module

The aim of this module is to study specific nutrients which are considered to be of importance to human health and are currently the focus of significant interest including developing new recommendations for intake or means of assuring adequate status. Each nutrient will be studied in terms of its molecular, cellular and whole body effects. The module will focus on specific vitamins and trace elements, omega-3 fatty acids and adverse reactions to food.
FOURTH YEAR MODULES (FHEQ Level 7)

MAIN PROJECT MODULES

BIOL6013 ADVANCED RESEARCH PROJECT (LAB AND DATA) Semesters 1 and 2
ECTS: 30 Coordinator: Dr M Coldwell & Dr M Vargas-Caballero
CATS: 60

The aim of this module is to allow students to carry out an extensive laboratory- or data-based project on a specific topic related to his/her main area of study. The topic of this project must be substantially different from that undertaken in BIOL3034 or BIOL3069, and should ideally be with a different supervisor.

BIOL6069 ADVANCED FIELD RESEARCH PROJECT Semesters 1 and 2
ECTS: 30 Coordinator: Dr AR Kraaijeveld
CATS: 60

The aim of this module is to allow students to carry out an extensive field-based research project on a specific topic related to his/her main area of study. Each student selects an experimental investigation. The project is related to the major subject area of the student in the fourth year. Each student is assigned to an appropriate supervisor who will advise on and direct the project and the preparation of a written report.

The supervisor for this project must be different from a student’s supervisor for BIOL3061, or BIOL3062.

OTHER PROJECT/SKILLS BASED MODULES

BIOL6011 ADVANCED LIBRARY PROJECT Semester 1 and 2
ECTS: 7.5 Coordinator: Dr ML Bellamy
CATS: 15 Prerequisites: Any 3rd year project module preferred

The aim of this module is to provide an opportunity for a critical study in depth of a topic chosen by the student after consultation with the coordinator and an appropriate supervisor.

BIOL6052 ADVANCED QUANTITATIVE METHODS Semester 1
ECTS: 7.5 Coordinator: Dr T Ezard
CATS: 15 Prerequisite: BIOL2008

The aims of the module are to review core principles of experimental design that underpin all quantitative methods; to develop and apply statistical models for complex field datasets using the freeware environment R; to diagnose and treat the causes and consequences of violating statistical assumptions including imbalance and covariation in multifactorial and multivariate analysis of ecological data.

BIOL6053 CURRENT RESEARCH Semesters 1 and 2
ECTS: 7.5 Coordinator: Dr N Smyth/ Dr A Marchant/ Dr MJ Coldwell
CATS: 15

The aim of this module is to provide students with the opportunity to learn about current research in the format used by academics: seminars/conferences and discussions. Students will be expected to attend and engage in a series of scientific seminars by speakers external and internal to the University of Southampton. Students will be exposed to current research, much of which may not yet be published and therefore open to discussion. In the context of this module, students will also develop the skills required for summarising research in written form to a variety of target audiences, from scientific peers to the general public.

BIOL6054 TECHNIQUES & THEORY OF FIELD BIOLOGY Semester 1
ECTS: 3.75 Coordinator: Dr J Lock
CATS: 7.5 Prerequisites: None

The aims of this module are to gain knowledge of a wide range of ecological survey techniques and to implement techniques in a particular habitat.
The aims of this module are to introduce students to the UNIX/LINUX environment and demonstrate command line and scripting tools for data manipulation, to describe different file formats, to illustrate and explore computational methods for accomplishing data analysis tasks, basic statistics and graphing of results and to demonstrate the value of data analysis pipelines that can automate analysis from raw data to publication-ready graphical output.

Science Communication involves the dissemination of science to a lay audience. This is essential as an aid for governmental and industrial policy making. It is needed to counteract any misperceptions about science and is becoming an obligation for publically funded work. This module provides an introduction to the methods and resources a student will need in order to play an active role in communicating science.

The focus of this module is to stimulate and enhance the ability of students to think critically about published scientific research. This is done through a combination of introductory lectures, workshops, and student-led presentations and discussions.

This module will use a largely practical approach to develop the basic skills required for biological optical imaging. The module will examine measurement fundamentals, optical theory and operation of modern light microscopes and the chemistry and handling involved in the preparation of specimens. In addition this module will address the analysis, interpretation and presentation of data as required in a research environment.

This module will give students with an interest in molecular biosciences an overview of various key aspects of gene manipulation and analysis. It will provide a grounding in key skills that will either directly help towards research projects or prepare students for techniques they are likely to encounter in longer-term research careers.

Biomedical research, applications and many clinical tools are underpinned by modern spectroscopic and imaging techniques. These serve as valuable analytical tools for routine monitoring, diagnosis and prognosis as well as aids to therapeutic intervention such as surgery, transplants, and regular treatments. This module will introduce the key physical principles of different techniques used for spectroscopic and imaging measurements. State-of-the-art developments and applications in spectroscopy, microscopy, super-resolution and large-scale (whole body) imaging will be discussed, including biomedical imaging modalities applied in daily clinical practice.
TAUGHT MODULES

BIOL6010 APPLIED ECOLOGY Semester 1
ECTS: 7.5 Coordinator: Dr K Peh
CATS: 15 Prerequisites: None, but BIOL2004 preferred
[Cannot be taken if BIOL3009 already taken]

The aim of this module is to extend the knowledge of ecology and population biology taught in first, second
and third year modules to cover the application of these disciplines to solving ecological problems, such as
managing pests or genetically modified organisms and the problems associated with climate change. To
provide a coherent summary of the main methods used to manage pest populations. To examine the
ecological impacts of climate change and its mitigation. To provide examples of the applications of theoretical
ecology to topical ecological issues. To provide a summary of factors influencing how the land is managed,
especially in terms of food production.

BIOL6021 CURRENT TOPICS IN CELL BIOLOGY Semester 1
ECTS: 7.5 Coordinator: Dr M Przewloka
CATS: 15 Prerequisites: BIOL2002 or BIOL2010 preferred
[Cannot be taken if BIOL3001 already taken]

The aim of this module is to provide a detailed and up-to-date study of a small number of topics in modern cell
biology.

BIOL6022 MOLECULAR PHARMACOLOGY Semester 2
ECTS: 7.5 Coordinator: Dr D Rusling
CATS: 15 Prerequisites: BIOL2016 or BIOL2017
[Cannot take if BIOL3018 already taken]

The aim of this module is to provide students with an extended knowledge and understanding to molecular
basis of receptor pharmacology.

BIOL6023 CELLULAR SIGNALLING IN HEALTH & DISEASE Semester 2
ECTS: 7.5 Coordinator: Dr N Divecha
CATS: 15
[Cannot take if BIOL3022 already taken]

The aim of this module is to provide an opportunity for study in depth of a topic chosen by the student after
consultation with the coordinators and an appropriate supervisor.
BIOL6024 SELECTIVE TOXICITY Semester 1
ECTS: 7.5 Coordinator: Dr David Rusling
CATS: 15 Prerequisites: BIOL2017 (preferably BIOL2016 as well)
 [Cannot take if BIOL3027 already taken]

The aim of this module is to provide students with more in-depth knowledge and understanding to the principles of selective toxicity, in which chemotherapeutic agents are used to inhibit the growth of an invading species by selective targeting pathways or processes in the pathogen.

BIOL6025 CELL & GENETIC ASPECTS OF ANIMAL DEVELOPMENT Semester 2
ECTS: 7.5 Coordinator: Dr Claire Clarkin
CATS: 15 Prerequisites: BIOL2002, BIOL2003 (must be passed)
 [Cannot be taken if BIOL3006 already taken]

The aim of this module is have a more in-depth understanding of the cellular and genetic mechanisms of animal development and how they are studied.

BIOL6027 REGULATION OF GENE EXPRESSION Semester 1
ECTS: 7.5 Coordinator: Professor KA Lillycrop
CATS: 15 [Cannot take if BIOL3015 already taken]

The aim of this module is to provide an understanding of gene regulation at the transcriptional and post-transcriptional levels in eukaryotic organisms, and how the deregulation of such processes can lead to human disease.

BIOL6028 GLOBAL CHANGE BIOLOGY Semester 2
ECTS: 7.5 Coordinator: Dr J Godbold
CATS: 15 Prerequisites: BIOL2007 preferred but not essential.
 [Cannot be taken if BIOL3056 already taken]

To provide: a) An understanding of current global change, in relation to anthropogenic influences b) To quantify the impacts of change, particularly atmospheric CO2, drought and temperature changes on biological systems c) To provide examples from molecular through to ecosystem on the likely impacts on change, using both animals and plants for case studies d) To provide an overview of the ecosystem services concept and the methodological approaches to quantifying and mapping ecosystem services.

BIOL6029 TOPICS IN ECOLOGY & EVOLUTION Semester 2
ECTS: 7.5 Coordinator: Dr AR Kraaijeveld
CATS: 15 Prerequisites: BIOL2001 (must be passed), BIOL2004
 [Cannot be taken if BIOL3010 already taken]

The aims of this module are to extend the knowledge of ecological and evolutionary processes taught in first and second year modules provide an in-depth account of the research areas of interest of Biological Sciences staff working in ecology and evolution

BIOL6030 MOLECULAR CELL BIOLOGY Semester 1
ECTS: 7.5 Coordinator: Dr I Tews
CATS: 15 Prerequisites: BIOL2010 and BIOL2011
 [Cannot take if BIOL3014 already taken]

The aim of this module is to provide an understanding of the ways in which proteins are targeted to their appropriate cellular locations within eukaryotic cells following synthesis; the mechanisms involved in targeting proteins presented from the external environment and the role played by tyrosine kinase receptor cascades and oncogenes in normal and aberrant cell signaling.
BIOL6032 MOLECULAR RECOGNITION Semester 2
ECTS: 7.5 Coordinators: Dr I Tews
CATS: 15 Prerequisites: BIOL2010/BIOL2011 or BIOL2012
[Cannot be taken if BIOL3013 already taken]

The aim of this module is to illustrate the nature of interactions between macromolecules important in biological systems.

BIOL6033 MOLECULAR AND STRUCTURAL BASIS OF DISEASE Semester 2
ECTS: 7.5 Coordinators: Dr PTF Williamson
CATS: 15 Prerequisites: BIOL2010/BIOL2011 or MEDI2013
[Cannot take if BIOL3017 already taken]

The aim of this module is to illustrate the nature of interactions between macromolecules important in biological systems.

BIOL6034 SYSTEMS NEUROSCIENCE Semester 2
ECTS: 7.5 Coordinator: Professor JE Chad
CATS: 15 Prerequisites: BIOL2014 (BIOL3021 is encouraged)
[Cannot take if BIOL3020 already taken]

To expose students to research level studies into the function/dysfunction of the central nervous system. The course will describe neural cell populations and CNS development, followed by the mechanisms of learning & memory and analyses of neural circuits controlling behaviour.

BIOL6035 CELLULAR AND MOLECULAR NEUROSCIENCE Semester 1
ECTS: 7.5 Coordinators: Professor JE Chad/Professor V O’Connor
CATS: 15 Prerequisites: BIOL2014
[Cannot take if BIOL3021 already taken]

The aim of this module is to provide an understanding of the function of, and interactions between, membrane signalling proteins that produce the overt electrophysiological behaviour of neurones.

BIOL6036 NEUROPHARMACOLOGY of CNS DISORDERS Semester 2
ECTS: 7.5 Coordinator: Professor LM Holden-Dye
CATS: 15 Prerequisite: BIOL2016 or BIOL2017
[Cannot be taken if BIOL3025 already taken]

The aim of this module is to describe basic concepts in neuropharmacology e.g. on the localisation and putative function of neurotransmitter pathways in the brain and to use this knowledge to consider different theories relating to the biochemical basis of action of psychotomimetic and psychotropic drugs. This is covered in the context of major psychiatric conditions including schizophrenia, depression and drug addiction.

BIOL6037 PATHOPHYSIOLOGY of the LUNG Semester 1
ECTS: 7.5 Coordinator: Dr JA Warner (jawarner@soton.ac.uk)
CATS: 15 Prerequisites: BIOL2014, BIOL2010 and BIOL2011
[Cannot take if BIOL3026 already taken]

The aim of this module is to give students a sound background in modern molecular medicine using examples from pulmonary health and disease.

BIOL6038 IMMUNOLOGY Semester 1
ECTS: 7.5 Coordinator: Dr S Sahota (S.S.Sahota@soton.ac.uk)
CATS: 15 [Cannot take if BIOL3037 already taken]

The aims of the module are to provide an understanding of core immunology and the immunological basis of some common diseases.
<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Semester</th>
<th>ECTS</th>
<th>Coordinator</th>
<th>Prerequisites</th>
<th>Additional Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL6039</td>
<td>CELLULAR AND MOLECULAR PATHOLOGY</td>
<td>Semester 1</td>
<td>7.5</td>
<td>Dr J Blaydes</td>
<td>BIOL2002 or BIOL2003 or BIOL2014</td>
<td>[Cannot take if BIOL3043 already taken]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6040</td>
<td>DEVELOPMENTAL ORIGINS OF HEALTH AND DISEASE</td>
<td>Semester 2</td>
<td>7.5</td>
<td>Dr LR Green</td>
<td>BIOL2003 and/or BIOL2018</td>
<td>[Cannot take if BIOL3044 already taken]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6041</td>
<td>BIOMEDICAL TECHNOLOGY</td>
<td>Semester 2</td>
<td>7.5</td>
<td>Dr C Birts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6042</td>
<td>NUTRITION IN HEALTH & DISEASE: PART 1</td>
<td>Semester 1</td>
<td>7.5</td>
<td>Professor PC Calder</td>
<td>Any BIOL2010 – 2013 module</td>
<td>[Cannot take if BIOL3054 already taken]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL6043</td>
<td>NUTRITION IN HEALTH & DISEASE: PART 2</td>
<td>Semester 2</td>
<td>7.5</td>
<td>Dr GC Burdge</td>
<td>Any BIOL2010 – BIOL2013 module</td>
<td>[Cannot take if BIOL3055 already taken]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The aims of this module are to study recent advances in selected areas of biomedical science and to gain insight into the use of basic science in understanding the cell and molecular biology of specific disease processes.

The aim of this module is to provide an understanding of the major physiological mechanisms underlying the progression through embryonic, foetal and neonatal life and their implications for adult health.

This module is designed to illustrate the ways in which the theoretical principles of biochemistry, cellular and molecular biology presented in previous modules can be applied to yield important commercial or therapeutic products or processes.

The aim of this module is to examine the causative, protective or therapeutic roles of nutrition with regard to human disease.

The aim of this module is to study specific nutrients which are considered to be of importance to human health and are currently the focus of significant interest including developing new recommendations for intake or means of assuring adequate status. Each nutrient will be studied in terms of its molecular, cellular and whole body effects. The module will focus on specific vitamins and trace elements, omega-3 fatty acids and adverse reactions to food.
This module explores current topics in plant cell biology. It provides an understanding of the unique features of plant cells and of the cellular mechanisms that allow plants to interact with their environment. Responses at the cellular level to important environmental problems encountered worldwide are discussed and the mechanisms plants use to adapt and survive are covered. The application of modern techniques in cell biology is included and so this module is also of value to those with a broad interest in cell biology. The topics include ones in which members of the course team are actively engaged in research and therefore the most up-to-date information is provided. Areas covered include: the diversity of plastid function; chloroplast function and assembly; the vacuole as a multifunctional compartment; membrane transport; calcium and phytochrome signalling; stress responses covering salt, ozone, and heavy metals.

The aims of this module are to explore the various mechanisms that neurones employ to execute cell death processes in both normal and abnormal conditions; and to improve your understanding of the pathogenic mechanisms that cause cell death in several neurodegenerative diseases.

The aim of the course is to provide a broad introduction to the applied use of plants in the modern world, highlighting the benefits of using cutting edge technologies in combatting some of the challenges faced by society.

This module aims to provide an understanding of bacterial biofilms and the environmental, industrial and health care problems related to complex microbial consortia of societal importance. Students will learn to describe and explain the basis for biofilm development in nature and in chronic infections, as well as to understand and interpret the outputs of modern techniques in microbial biofilm research.

This module concerns global biodiversity, what we understand by it and why it is in crisis, and current efforts to conserve and manage it.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Semester</th>
<th>ECTS</th>
<th>Coordinator</th>
<th>Prerequisites / Notes</th>
</tr>
</thead>
</table>
| BIOL6071 | **CANCER & CHROMOSOME BIOLOGY** | Semester 1| 7.5 | Dr D Tumbarello | Prerequisites: BIOL1005 or BIOL1006 and BIOL1007
 Cannot be taken if BIOL3064 already taken
| | | | | | The aim of this module is to provide students with a research level understanding of various topics in cancer biology associated with carcinogenesis, tumour progression, and metastasis. This will require understanding the genetic drivers of cancer development and the mechanisms of progression both at the molecular and cellular level. |
| BIOL6074 | **BIOINFORMATICS & SYSTEMS BIOLOGY** | Semester 1| 7.5 | Dr R Ewing & Dr J Gibson | Prerequisites: BIOL2012 and BIOL2013 preferred, but not essential
 Cannot be taken if BIOL3063 already taken, or with BIOL6055
| | | | | | The aims of this module are to introduce students to the latest genomic, transcriptomic and proteomic technologies; illustrate the applications and limitations of these approaches; and provide students with some practical bioinformatics skills to enable them to process, analyse, and interpret the resulting data. |
| BIOL6076 | **BIOMEDICAL PARASITOLOGY** | Semester 2| 7.5 | Dr N Smyth | For Biology / Zoology students: the Parasitology section of BIOL 2022 will be offered as freestanding lectures
 Cannot be taken if BIOL3065 already taken
| | | | | | The aim of this module is introduce third year students to the main clinically relevant parasite classes, it will consider their lifecycles, the human/veterinary pathology caused and the treatment methods both of the primary and where applicable intermediate hosts and environment. It will give an understanding of vector borne disease. The module will consider the interaction and evasion methods used by parasites in respect to the immune system and chemical control. It will consider the evidence of possible benefits gained by parasitism. Finally it will demonstrate examples of host: parasite coevolution and consider the likely changes in parasite risk the UK in the light of environmental change. |
| BIOL6078 | **STRUCTURE & FUNCTION OF THE CENTRAL NERVOUS SYSTEM** | Semester 1; | 7.5 | | Prerequisites: None;
| | | | | | This module will give students an overview of the nervous system from an anatomical perspective. The aim of this module is to provide an understanding of the structure and function of the central and peripheral nervous system and how it interacts with other systems in the body to regulate human physiology and behaviour. Students will gain an understanding of specific brain/spinal cord structures and delineated systems and their associated functions through lectures, practical and tutorial sessions. |
| BIOL6079 | **GLIAL DEVELOPMENT & BIOLOGY** | Semester 2| 7.5 | Dr D Gomez-Nicola | Prerequisites: None;
| | | | | | This module provides an understanding of the development and function of the different glial cells types in the healthy brain, as well as their roles in disease. We will provide an overview of the different cell lineages that make up the different populations of glial cells, including astrocytes, oligodendrocytes, microglia, Schwann cells, Muller cells, NG2 cells, and others. We will identify key roles of each cell type in the healthy and diseased brain, as well as the mechanisms regulating crosstalk between different glial cells types and with neurons. Following this module, students will be expected to be able to integrate cell biology and molecular information into a coherent understanding of glial cells functions, and be able to evaluate examples of current research in this field. |
| BIOL6080 | **SYNAPTIC FUNCTION IN HEALTH AND DISEASE** | Semester 1| 7.5 | Dr M Vargas-Caballero | Prerequisites: None;
This module provides an understanding of synaptic function in health and disease from the molecular to the neuronal circuit level. The module will be based around seminal primary research papers that have shaped our understanding of synaptic function and synaptic integration in health and disease. Following this module, students will be expected to understand how synapses are analysed experimentally and design experiments to ask scientific questions in this topic.

BIOL6082 **SKILLS IN BIOMOLECULAR NMR** Semester 1
ECTS: 3.75 Coordinator: Dr P Williamson
CATS: 7.5 Prerequisites: None;

This module will provide students with an introduction to Biomolecular NMR and the insights it can provide in the biochemical/biomedical sciences. The course will provide an introduction into the theoretical background of NMR sufficient to understand the techniques can be used for studying biomolecular structure/function as well as magnetic resonance imaging. The course will contain a taught component supported by practical introduction to NMR spectroscopy.

BIOL6083 **SKILLS IN OPTICAL SPECTROSCOPY** Semester 2
ECTS: 3.75 Coordinator: Dr P Williamson
CATS: 7.5 Prerequisites: None;

Principle and practical application of UV/Visible Spectroscopy Fluorescence Spectroscopy CD Spectroscopy

BIOL6084 **ADVANCED NEUROSCIENCE** Semester 1 and 2
ECTS: 15 Coordinators: Dr D Gomez-Garcia and Professor John Chad
CATS: 30 Prerequisites: (BIOL3021, BIOL3025)

The aims of this module is to provide the MNeuroscience students a course based around Biological Sciences expertise in Neuroscience. The module will consist of multiple ‘work packages’, each led by neuroscience research scientists. Within each package the lead researcher(s) will explain the context of their research speciality and the concepts underlying the research methodologies employed and their analyses. The students will gain practical knowledge of how research data can be obtained, analysed and modelled to extend knowledge of neuroscience. These work packages will be focus around a generic structure encompassing pre-contact preparatory work, face to face contact in workshops, post contact assessment exercise followed by a final feedback session.